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ABSTRACT: Metabolic engineering aims to improve the production of economically
valuable molecules through the genetic manipulation of microbial metabolism. While the
discipline is a little over 30 years old, advancements in metabolic engineering have given way
to industrial-level molecule production benefitting multiple industries such as chemical,
agriculture, food, pharmaceutical, and energy industries. This review describes the design,
build, test, and learn steps necessary for leading a successful metabolic engineering
campaign. Moreover, we highlight major applications of metabolic engineering, including
synthesizing chemicals and fuels, broadening substrate utilization, and improving host
robustness with a focus on specific case studies. Finally, we conclude with a discussion on
perspectives and future challenges related to metabolic engineering.
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1. INTRODUCTION
In 1973, Cohen and Bailey developed in vitro plasmid
construction, known as recombinant DNA technology
today.1 This groundbreaking work enabled the biological
production of insulin and ethanol by introducing a gene
encoding human growth hormone and pyruvate decarboxylase
from Zymomonas mobilis into Escherichia coli, respectively.2,3

Soon after that, it was realized that the heterologous insertion
of a single gene or a biochemical pathway into microorganisms
could transform them into tiny chemical factories for the
production of molecules. Employing such techniques, a diverse
range of chemicals, fuels, pharmaceuticals, and proteins were
synthesized by engineered microorganisms in the late 1980s.4,5

Nevertheless, it was not until 1991 that James Bailey coined
the term “metabolic engineering” and defined it as “the
improvement of cellular activities by manipulation of
enzymatic, transport, and regulatory functions of the cell
with the use of recombinant DNA technology.”6 This nascent
metabolic engineering field has promptly evolved since then.
The early 2000s witnessed the omics era with the development
of genomics, transcriptomics, proteomics, and metabolomics,
enabling the elucidation of the interactions between these
components and uncovering how the host cellular environ-
ment changes in response to heterologous pathways or genetic
modifications such as gene deletion.7 Advances in analytical
and computational tools, synthetic biology, genome editing
tools, and high-throughput technologies developed in the late
2000s further accelerated sophisticated metabolic engineering
research.8−13

The primary objective of metabolic engineering is to
produce functional molecules (e.g., chemicals, fuels, materials,
and proteins) using microbial cell factories, while other
applications can be found in biological research (e.g.,
bioremediation and signal transduction) and medical research
(e.g., gene therapy and drug discovery).14−17 In general,
metabolic engineering starts with selection of a target product
that has high demand and promising applications and selection
of a host strain that can be engineered to produce the desired
product at high titer, rate, and yield (TRY). Then, a stepwise
process of design, build, test, and learn (DBTL) is employed to
design and build a native or non-native biochemical pathway
that can convert a substrate to a target product, followed by
optimization of the metabolic fluxes toward the desired
product using tools in systems biology and synthetic biology.

Figure 1 summarizes several significant landmarks in
metabolic engineering. Classical metabolic engineering relies
on the iterative process of knowledge-guided DBTL in which
increasingly better performing strains are constructed based on
prior knowledge and intuition.18−21 Although this approach is
widely used to improve the production of chemicals and to
extend the substrate range, it is often time-consuming and
labor-intensive. To accelerate strain design, several important
computational tools, such as metabolic flux analysis, genome-
scale metabolic models, and related algorithms like OptKnock,
have been established to predict genetic modifications that can
lead to higher chemical production.22−26 Development of
synthetic biology tools, such as protein engineering and
clustered regularly interspaced short palindromic repeats and
CRISPR-associated protein 9 (CRISPR/Cas9), and novel
concepts, such as dynamic control and cell-free metabolic
engineering, has further facilitated metabolic engineering
endeavors.27−33 More recently, important milestones included
metabolic engineering efforts in nonmodel organisms,
utilization of C1 compounds, and incorporation of machine
learning (ML) techniques.34−37

In this review, we first describe the strategies and tools used
in metabolic engineering with a focus on the DBTL cycle in
the model organisms E. coli and Saccharomyces cerevisiae
because these organisms have been studied and engineered
most extensively. Then, we highlight some representative
applications of metabolic engineering for production of bulk
and fine chemicals and fuels, bioconversion of C1 compounds,
and enhancing robustness in model organisms. In addition, we
highlight notable examples of metabolic engineering of non-
model organisms for production of itaconic acid and 2-
propanol/acetone among others. Finally, we briefly discuss the
future directions of metabolic engineering, including engineer-
ing of non-model organisms, biofoundry development,
development and application of ML, utilization of nonsugar
substrates, engineering of microbial consortia, and scale-up
fermentations.

2. TOOLS
In this section, we provide a brief review of the DBTL cycle
used for metabolic engineering of strains for production of
chemicals and fuels in the past three decades.
2.1. Design
The first step involved in engineering a strain to produce a
molecule of interest is the identification of a biochemical

Figure 1. Important milestones in metabolic engineering.
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pathway. If a native producer is known, it can be further
engineered to improve the titers. However, given the
advancement of genetic engineering tools and thorough
characterization of metabolism and physiology in model
organisms, a more common approach is to construct the
pathway in organisms such as E. coli or S. cerevisiae. The
pathway, expressed through plasmid or chromosomal integra-
tion, converts a precursor molecule in the host strain to the
target molecule. Once the complete biosynthetic pathway is
implemented in the host strain, iterative rounds of genetic
manipulations are carried out to direct the metabolic flux
toward the desired product. In the past, most initial metabolic
engineering efforts relied on random mutagenesis and
overexpression of a single biosynthetic gene for improving
production. The advancement in synthetic biology tools
allowed metabolic engineering to continuously tweak enzy-
matic, transport, and regulatory functions of a cell to create a
platform strain for the production of target molecules.
Learning from the success stories of the past three decades,
various methodologies have been developed based on the
knowledge of rewiring cellular metabolism. Moreover,
computational approaches such as genome-scale modeling
and ML algorithms have been developed to improve metabolic
engineering outcomes. Overall, the metabolic engineering
strategies for strain design can be primarily divided into three
main categories: (1) knowledge-guided design, (2) evolu-
tionary and combinatorial design, and (3) retrobiosynthesis.
We summarize these strategies in section 2.1.

2.1.1. Knowledge-Guided Design. Over the last 30
years, the production of numerous molecules has laid the
foundation of metabolic engineering as a distinct field. Based
on these efforts, several rules have emerged for understanding
and making the necessary modifications to the host organisms
to improve the TRYs of the desired products. In this section,
we provide a brief overview of the strategies implemented
based on rational design (Figure 2).

2.1.1.1. Push−Pull−Block. Microorganisms in nature have
evolved to improve fitness and maintain metabolic homeostasis
in their respective environments. Therefore, the cellular
network is highly regulated, and trade-offs are observed
when a biochemical pathway is introduced to produce the
desired molecule. To improve the TRY, cellular rewiring must
be performed. The most straightforward, or the “bread and
butter,” strategy of researchers to relax some of the regulations
and ensure the flow of carbon flux toward the product of
interest is to implement the push−pull−block strategy. As the
name suggests, the strategy consists of three components:
push, driving an increase of flux toward pathway precursors via
upregulation of enzymes; pull, drawing higher flux along the
biochemical pathway by overexpression of terminal enzymes;
and block, removing competing pathways consuming pathway
intermediates. Sometimes, overexpression of enzymes in the
push strategy is not sufficient as there can be feedback
inhibition from the downstream intermediates or the product
itself. Therefore, push also includes introducing a heterologous
feedback-resistant enzyme to ensure a sufficient precursor
pool.38 Similarly, in the case of a single enzyme catalyzing

Figure 2. Overview of knowledge-guided approaches for strain design. These approaches can be divided into four categories: push−pull−block
(i.e., overexpress or knockout genes to push the carbon flux toward the molecule of interest), cofactor engineering (i.e., perform strain
modifications to ensure abundant cofactor supply and maintain cellular redox balance), spatial engineering (i.e., tune the organization of the
pathway by mimicking multienzyme complexes or exploit cellular compartments), and transporter engineering (i.e., identify and characterize
transporters to facilitate efficient flow across different membrane barriers).
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sequential reactions in a pathway, the block strategy is
implemented by mutating the enzyme39 to prevent leaking of
intermediate molecules.

Any metabolic engineering work for efficient production of a
molecule generally involves the utilization of all three
strategies. However, depending on the target molecule,
different versions of push−pull−block are implemented. This
includes a two-layer strategy where one of the layers focuses on
changing the final product composition while the other layer
improves the supply of precursors.40 Another version is the
“push−pull−package−protect” strategy,41 where package in-
volves modification of vesicles for efficient, degradation-free
storage of triacylglycerols (TAG)42 and protect implies
knocking out enzymes to avoid degradation of the desired
product.

The requirement of carbon flux for production of the target
molecule by the host strain has made the push−pull−block
strategy widely applicable irrespective of the target product and
the organism in which the metabolic pathway is constructed. In
most cases, identifying the gene targets to implement the
push−pull−block strategy is relatively straightforward. The
advancements of computational learn tools such as genome-
scale models, kinetic models, and ML algorithms have further
aided in identifying nonintuitive gene targets to assist in
implementing the push−pull−block strategy more effectively
and are covered in more detail in section 2.4.

2.1.1.2. Cofactor Engineering. Cofactors are known as the
helper molecules of enzymes. They can either be organic like
NAD+ or inorganic like iron. They bind proteins and help
them carry out their catalytic functions. When a biosynthetic
pathway is constructed, some of the heterologous enzymes
might not function properly due to the absence of special
cofactors or redox imbalance. Examples include the use of
multiple cytochrome P450s for production of noscapine, which
requires large quantities of NADPH for electron transfer,
resulting in possible disruption of NADPH/NADP+ balance.43

Therefore, multiple strategies have been developed to ensure
an adequate supply of cofactors. This includes constructing a
cofactor regeneration system, enhancing cofactor levels by
regulating the native machinery, and even modifying the
enzyme’s cofactor preference.

The absence of special cofactors is a major problem in the
biosynthesis of plant specialized metabolites such as opioids,
alkaloids, and terpenes. Another factor that plays a role is the
subcellular location of the cofactor. For example, the
lipoylation machinery is only present in yeast mitochondria.
Therefore, a functional pyruvate dehydrogenase cannot be
expressed in the cytosol. This can be resolved by reconstituting
the necessary machinery in the necessary compartment for
biosynthesis and regeneration of the desired cofactor.43,44

Similarly, cofactor supply can also be enhanced by regulating
the endogenous system.45−47

Another cofactor engineering strategy to maintain redox
balance is to change the cofactor preference. Liu and co-
workers modified the cofactor specificity of the redox reaction-
related enzymes, glyceraldehyde-3-phosphate dehydrogenase
and malate dehydrogenase, in the N-acetylglucosamine
biosynthetic pathway.48 Protein structure-guided comparison
helped in identifying amino acid residues to convert the
cofactor preference from NAD+ to NADP+. Computational
tools such as CSR-SALAD49 are also available to screen for
mutation sites in silico for changing the cofactor specificity.
Further incorporation of ML-guided protein-structure pre-

diction models will benefit the field of cofactor engineering.
More details on cofactor engineering can be found in these
reviews.50,51

2.1.1.3. Spatial Engineering. An emerging strategy to
improve the yield and titers of biosynthetic pathways is the
spatial organization of enzymes inside cells. Organizing the
pathway can boost local enzyme concentrations, remove
diffusion limitations, limit accumulation of toxic intermediates,
as well as bypass competing enzymes and inhibitory regulatory
networks. A variety of strategies have been implemented using
synthetic biology tools to exploit these advantages. We divide
these strategies into three categories: (1) fusion proteins, (2)
synthetic scaffolds, and (3) compartmentalization.

The initial efforts in spatial engineering were inspired by
multienzyme complexes which facilitate efficient substrate
channeling. To replicate these complexes, a simple approach is
to create a synthetic fusion protein by linking two or more
genes with a linker sequence. Examples include the
construction of a farnesyl pyrophosphate (FPP) synthase−
farnesene synthase fusion protein,52 which reduces the loss of
the FPP pool to competing metabolic reactions. Similarly, a 6-
fold improvement in the production of raspberry ketone was
achieved by utilizing a synthetic fusion protein of coumarate−
CoA ligase and benzalacetone synthase.53 Fusion proteins
primarily aid in removing diffusion limitations and might also
benefit from protein−protein interactions. However, strenuous
characterization of linker sequences with varying length,
composition, and enzyme orientation has limited the
applications of fusion proteins. Recent advancements in
structure prediction have further aided in resolving these
issues. For example, a rationally designed biocatalytic cascade
of NADH-dependent alcohol and aldehyde dehydrogenase was
constructed using Rosetta software to determine the optimal
linker placement.54 Adding the linker close to the active site of
the enzymes resulted in electrostatic channeling of acetalde-
hyde, helping achieve a 500-fold improvement of catalyst
turnover frequency compared to the unbound enzymes. To
incorporate more enzymes in the metabolic complexes, a better
approach is attaching pathway enzymes to a scaffold. Synthetic
scaffolds have been created from RNA binding domains,55

protein−protein interaction domains,56 and even DNA
molecules that are recognized by zinc-finger fused enzymes.57

Compared to fusion proteins, synthetic scaffolds provide
modular control over enzyme stoichiometry and, therefore, the
metabolic flux.

The third strategy is compartmentalization. In recent years,
unorthodox strategies to spatially localize enzymes in an
organelle or in vitro compartments have effectively boosted the
yield and titer of biochemicals. Apart from the advantages of
spatial engineering, organelles provide a unique physicochem-
ical environment that can offer favorable conditions for
different metabolic products. This includes varying pH, redox
potential, and an adequate supply of essential cofactors and
precursors. To realize the benefits of subcellular engineering,
well-characterized protein localization tags have been used to
localize enzymes in organelles to improve the production of
various molecules in diverse organisms.58−61 We refer readers
to a recent in-depth review covering organelle engineering in
yeasts.62 Besides utilizing resources of a single organelle,
comprehensive engineering of multiple subcellular compart-
ments is gaining interest. Higher titers have been achieved for
isoprene,63 squalene,64 astaxanthin,65 and fatty acid methyl
esters66 by taking advantage of precursors’ presence in multiple
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locations. Apart from only improving production, organelle
localization has been implemented to provide spatial
separation for improving pathway specificity.67 Similarly,
bacterial microcompartments have been employed for
propanediol utilization.68 Synthetic biology toolkits have also
been used to perform in vitro compartmentalization69 and
light-based synthetic organelle assembly70 to cluster enzymes
together. Currently, most of the work in the field primarily
focuses on targeting pathways to compartments. In a recent
work, the overexpression of INO2, a regulatory gene in yeast
phospholipid biosynthesis, enhanced the activity of the
endoplasmic reticulum (ER) and resulted in improved
squalene and protopanaxadiol production.71 Therefore,
improving shape, size, and organelle activity by alleviating
the compartment-specific constraints should also be prioritized
in the future. Overall, the field of spatial engineering has
demonstrated the ability to substantially improve the
production of various molecules.

2.1.1.4. Transporter Engineering. A rather overlooked but
important aspect of strain design is the transportation of
molecules. The process of transportation is involved in every
aspect of the metabolic pathway starting from the substrate
uptake, efficient intermediate transportation, to the export of
products. Here, we summarize a range of experimental
techniques and computational models developed to engineer
transporters of interest.

The first step in the production of target molecules is
substrate utilization. Most of the initial work relied on the use
of glucose as a carbon source, but there has been growing
interest in converting lignocellulose-type renewable feedstocks,
plant extracts, and pulp waste to desired molecules. However,
in model organisms like S. cerevisiae, the transportation of
nonglucose substrates across the membrane is often rate-
limiting because of very slow uptake or the absence of
necessary import machinery. To overcome this challenge, the
identification and characterization of putative heterologous
transporters is necessary. For example, the transporters for D-
xylose and L-arabinose were identified using various bio-
informatics techniques such as genome mining via sequence
similarity,72 transcriptomic analysis, and phylogenetics.73

Similarly, transporters were characterized for other sugar
forms obtained from different feedstocks.74,75 Because most of
the biomass hydrolysates are a mixture of multiple sugars,
Because biomass hydrolysates consist of a mixture of multiple
sugars, strategies have been developed for substrate co-
utilization while overcoming glucose repression76 and further
improved by engineering mutant transporters with directed
evolution.77 Furthermore, inspiration from membrane trans-
port metabolons has led to the design of an artificial enzyme-
transporter complex to further enhance substrate utilization.78

Early work on the transport of pathway intermediates
primarily focused on reuptake79,80 of the metabolites or
avoiding leakage through transporters.81,82 Emerging method-
ologies for organelle engineering have given transporter design
a new dimension. Smolke and Srinivasan expressed 26 genes
across six subcellular locations to synthesize medicinal tropane
alkaloids in yeast.83 Imitating the extensive intra- and
intercellular compartmentalization inherent to the plant
biosynthetic pathways required addressing the transport
limitations across organelle membranes by characterization of
necessary plant transporters. A follow-up study84 implemented
an artificial neural network to prioritize transport candidates to
screen for tropane alkaloid exporters across the vacuole and

improved the production of hyoscyamine and scopolamine by
2- and 1.5-fold, respectively. Apart from increasing titers of a
molecule, product preference can be switched by reprogram-
ming interorganelle transporters.85 For example, systematic
identification and replacement of mitochondrial metabolite
carriers in Yarrowia lipolytica resulted in a complete switch
from production of citrate to isocitrate.

Transporters also play an important role in exporting the
final product. The advantages include simplified downstream
processing, decrease in inhibitory interactions and potential
cellular toxicity due to product accumulation, and higher
production resulting from a shift in the chemical equilibria.
Mukhopadhyay and co-workers employed a bioinformatics
screen to identify novel transporters for biofuel tolerance.86 A
library of 43 efflux pumps was screened using a competitive
growth assay, and the tolerance was improved for 5 chemicals.
Similarly, Dong and co-workers screened transporters for
medium-chain fatty acid (MCFA) secretion.87 A combination
of multiple transporters showed a synergistic effect and
resulted in more than 2-fold improvement in MCFA
production. In another work, a substrate similarity search
approach developed by Wang and co-workers exploited the
promiscuity of export systems of similar chemicals for malate
export.88

Transporter engineering is covered for interested readers in
these extensive reviews.89,90 However, in addition to rigorous
experimental characterization, more studies need to focus on
developing gene mining tools and ML models for in silico
discovery of transporters.

2.1.2. Evolutionary and Combinatorial Design. Evolu-
tionary design aims to evolve a wild-type or platform strain to a
strain that can produce target molecules at improved TRY.
Variations of evolutionary design are the most tried and
reliable methods for iterative strain improvement. Evolutionary
design predates rational and computational design strategies as
no causal or mechanistic understanding is necessary for finding
improved phenotypes. Evolutionary design relies on the
principles of evolution, namely diversification and selection,
which in the case of metabolic engineering is typically
diversification of DNA and selection of improved mutant
strains. These methods are often categorized as adaptive
laboratory evolution (ALE), directed evolution (DE), or
continuous evolution (CE).

While ALE can be considered a continuous evolution
method, it deserves to be commented on separately as it was
developed first and is still the most used evolutionary
technique. In ALE, random variation in genomic DNA acts
as the source of diversification, and growth is used for
selection. The defining feature of ALE is that it relies on
growth-dependent phenotypes. Common selection criteria
include growth rate, tolerance to a range of different chemical
or physical stressors, substrate utilization, and growth coupled
molecule production. A distinct advantage of ALE associated
growth phenotypes is that multistress resistance can be
engineered simultaneously by applying selection pressures in
series or in parallel.91 One major disadvantage of ALE is that
the mutagenic rates are often low and mostly limited to point
mutations. This can lead to long experiments,92 in some cases
years long.93 We refer readers to a recent in-depth review on
ALE.94

Historically, DE has been associated with the engineering of
individual genes or proteins instead of polygenic phenotypes,
but more recently, DE methods have been expanded to
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engineer pathways and entire genomes.95 DE induces
diversification with a range of different in vivo and in vitro
methods and these designs can be further reduced in size with
computational tools to remove combinatorial elements that are
unlikely to be successful. Because DE starts with a more
diverse set of candidates than ALE, it can arrive at a suitable
design through fewer cell generations and is typically
associated with more complex, lower throughput screening/
selection strategies where selection methods select growth-
linked phenotypes and screening methods evaluate each
variant and choose only high performers. DE-associated low
throughput screening techniques include microtiter plates,
chromatography, mass spectrometry (MS), agar plating, and
droplet microfluidics. DE is also amenable to high-throughput
selection methods used by ALE and additional high-
throughput screening methods like fluorescence-activated cell
sorting (FACS) (Figure 3C). One major limitation of DE
methods is that they are limited by the transformation
efficiency of the host strain which creates an upper limit for

library size. We refer readers to a recent in-depth review on
DE.95

As a mix of DE and ALE, CE aims to generate gene
diversification and perform screening/selection without any
human intervention. CE methods belong to a broader
classification of in vivo diversification methods, which includes
ALE, but more recent methods have sought to increase
mutation rates over basal mutation rates, as in ALE, by using
an error-prone polymerase, a deaminase, or by other means.
CE methods operate most similarly to ALE, but they require
less labor than DE and can generate even greater diversity than
DE because they are not limited by transformation efficiency.
A few representative CE systems for increasing mutational
diversity include OrthoRep,96 EvolvR,97 and Muta T7 (Figure
3B).98 Like DE, CE is amenable to using a more varied list of
selection or screening methods in comparison to ALE. Key
limitations of CE systems include that they must be properly
built and validated in the host of interest if there is not already
an established CE system and that each CE system is limited to

Figure 3. Evolutionary and combinatorial design. (A) The directed evolution (DE) workflow where the source of diversification is selected to
target a specific level of the genome. Example sources of diversification include MAGE, COMPACTER, and MAGIC. DNA is transformed and
then mutants go through screening/selection. DNA must be isolated during each round so positive hits can be recorded or so permanent
modifications can be made on a new parent strain. (B) Continuous evolution (CE) begins with the source of diversification where the simplest
version of continuous evolution is ALE in which the source of diversification is limited by the mutagenic rate of wild-type polymerase. Newer
methods of CE increase the mutagenic rate of mutation with error prone replication shown with OrthoRep and EvolvR. In the case of EvolvR, a
fused dead CRISPR/Cas system allows for more targeted mutations. Mutants are propagated though serial transfer and then go through screening/
selection. DNA is only isolated and sequenced according to chosen intervals or at the terminating cycle, which greatly reduces labor and helps
increase mutant diversity. (C) Screening and selection methods for evolutionary design. The top two methods shown are dependent on growth and
for this reason are often associated with CE methods, specifically ALE. Plate-based screening and metabolite screening are examples of low-
throughput methods that are often associated with DE. FACS, while high throughput is expensive and time-consuming and is therefore often used
in DE because it only needs to be run a few times. Nothing in principle precludes these methods from being used in CE.
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specific types of mutational patterns. We refer readers to a
recent in-depth review on CE.99

Combinatorial design approaches include methods for
generating diversification with varied sequence or structural
patterns. In the case of DNA mutagenesis,95 in vitro
diversification is the most common method due to its ease
of control and high efficiency, but there have been recent
advances in in vivo diversification, with opportunities for
making the entire process continuous with CE. Here we give a
few in vitro examples focusing on different types of cellular
manipulation. Multiplexed genome engineering (MAGE)
allowed for the editing of multiple targets with DNA
mismatches, deletions, and small insertions on the genome
for the generation of large combinatorial libraries and was used
for increasing E. coli lycopene production.100,101 Customized
optimization of metabolic pathways by combinatorial tran-
scriptional engineering (COMPACTER) allowed for the
recombination of pathway genes on a plasmid with varied
promoter strengths, resulting in a library of pathways with
varied expression.102 More recently, CRISPR/Cas methods
have been used for precise genome-scale multiplexing. One
such example is the multifunctional genome-wide CRISPR
(MAGIC) system, which creates diversity by constructing a
genome-scale plasmid library for gene activation, interference,
and deletion (Figure 3A).103 We refer readers to further details
on evolutionary and combinatorial design with a recently
published book.104

2.1.3. Retrobiosynthesis. Retrobiosynthesis tools are
computational tools that predict metabolic pathways for target
molecules. The fact that they can enumerate reliable pathways
based on databases makes them popular auxiliary tools for
metabolic engineers. There are two types of retrobiosynthesis
tools: rule-based tools and ML-based tools. The rule-based
tools can transform compounds in databases into readable
strings and then extract reaction rules from them, including
reaction centers for both reactants and products with their
changes. The range of the reaction centers will determine the
accuracy of those rules. When a target molecule is input, the

search algorithm will find optimal pathways within the
extracted rules according to molecular similarity. However, if
the input does not match with existing rules, the rule-based
tools cannot predict properly. In contrast, the ML-based tools
will not explicitly extract rules, they instead use the reactions in
the database to directly guide the construction of new
pathways. Therefore, the ML-based tools are not limited by
rigid rules but may not be as accurate as rule-based tools for
known reactions due to the lack of templates. For both
complementary tools, the predicted pathways will start from
the target molecule, trace back through several intermediates,
and finally reach a starting metabolite, suggesting enzymes for
each reaction. If many pathways are available for a certain
molecule, the evaluation metrics such as yield, toxicity, and
thermostability are used to assign a score to each pathway for
ranking. SCScore105 is a widely used score system that captures
the synthetic complexity of each molecule (Figure 4).

In the most recent retrobiosynthesis tools, some additional
functions are added to enhance their performance. A
specialized rule extracting tool called rePrime106 was integrated
with novoStoic106 to complete all the tasks from extracting
rules to predicting pathways. In another example, Monte Carlo
tree search reinforcement learning was combined into the
previously developed ranking system in RetroPathRL107 in
order to predict longer pathways. In RetroBioCat108 and
novoPathFinder,109 web servers were adopted to make the
tools more user-friendly. Furthermore, Laino and co-workers
modified the molecular transformer to create the first ML-
based retrobiosynthesis tool, suggesting there will be future
applications of ML algorithms in this field.110

In order to construct metabolic pathways, retrobiosynthesis
tools are often used together with enzyme identification and
directed evolution tools.111 While a series of optimal pathways
are suggested by the retrobiosynthesis tools, other tools will
predict the probability that a certain enzyme or mutant can be
used in each pathway, contributing to a complete pathway with
high yield and selectivity. In metabolic engineering, the
retrosynthesis tools have been used to guide experiments and

Figure 4. Workflow of retrobiosynthesis. Retrobiosynthesis tools can be divided into two categories, namely rule-based tools and ML-based tools.
The rule-based tools can extract reaction rules from a database and then predict pathways based on those rules, while the ML-based tools will use
the reactions in a database to directly guide the construction of new pathways. Given the target molecules as an input, both tools can output
pathways including several intermediates and enzymes, along with scores indicating the confidence in those pathways.
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the predicted pathways have been tested by in vitro and in vivo
experiments to achieve synthesis of desired products from
glucose.112

2.2. Build

Once the biochemical pathway to produce the target molecule
has been identified using the design strategies described above,
the pathway needs to be inserted into a microorganism. Due to
the increase in genomic stability, integration of the biochemical
pathway into a host chromosome is preferred and can be
achieved using genome editing tools. Furthermore, high TRY
may not be achieved just by simply expressing the biochemical
pathway. To obtain maximal titers, gene regulation tools are
utilized to optimize heterologous pathways and host strains at
different cellular levels to avoid imbalanced gene expression,
which can lead to over- or under-expression of enzymes in the
pathway and accumulation of toxic metabolic intermediates. In
this section, we describe some traditional genome modification
tools and modern genome editing tools based on the CRISPR/
Cas system. We also discuss some synthetic biology tools to
regulate gene expression in static and dynamic manners.

2.2.1. Genome Editing Tools. Because episomal plasmids
with varying copy numbers enable fast, easy, reliable, and well-
regulated gene expression, they are the preferred method for
gene expression in proof-of-concept metabolic engineering.113

Nevertheless, replicating plasmids suffer from structural,
segregational, and allele distribution instability in selective

media. Furthermore, antibiotics are necessary to maintain
episomal plasmids, increasing the expense of overall bioprocess
cost. Therefore, chromosomal integration of the biochemical
pathway is more favorable than plasmid-borne overexpression
for maintaining genetic stability and consistent expression
throughout a cultured population and for decreasing the
metabolic burden and cell-to-cell variability in the absence of
selection pressures. Genome editing tools can be used for
chromosomal integration as well as for the removal of
competing pathways to minimize byproducts and divert
carbon and cofactor resources to target products. Here we
describe some genome editing tools enabling pathway
integration and gene deletion, including classical genome
editing tools and modern CRISPR/Cas9-based genome editing
tools (Figure 5).

2.2.1.1. Classical Genome Editing Tools. Traditionally,
gene knockouts were achieved in bacteria and yeast by
homology-directed integration, which relies on homologous
recombination (HR) of a donor double-stranded DNA, which
can be in the form of a disruption cassette or a suicide
plasmid.114−116 The donor DNA, containing a dominant
marker and DNA sequences homologous to the upstream and
downstream regions of the gene targeted for deletion, is
transformed into a microorganism of interest. HR then leads to
the deletion of the target genes, and correct mutants can be
selected via the positive selectable markers present on the
donor DNA. Unlike S. cerevisiae, which possesses a very strong

Figure 5. Tools for synthesis in metabolic engineering. (A) Genome editing tools including marker-dependent classical genome editing tools and
marker-free CRISPR/Cas9-based genome editing tools. (B) Tools for gene regulation in static and dynamic manners.
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HR machinery, bacteria such as E. coli typically have poor HR
efficiency, and the red system from the λ phage is expressed to
enhance the HR activity.117 Then, an additional step for
elimination of the selection markers from the chromosome can
be performed using site-specific recombination to enable
subsequent genetic modifications of the deletion strains.
Flippase (Flp) and Cre are the commonly used site-specific
recombinases that can perform recombination events at two
identical FRT and loxP sites, respectively. The dominant
marker gene is flanked by the recombination sites and removed
after chromosomal integration by expressing the corresponding
recombinase. This approach of coupling HR and site-specific
recombination has been applied for gene deletion in the
metabolic engineering of bacteria and yeasts for the production
of various chemicals for decades.118−124 Nevertheless, the main
disadvantage of this method is that various loxP or FRT scars
are left behind after several rounds of gene deletion. These
multiple identical copies of the scar can serve as future sites for
recombinase and thus potentially induce genetic instability.
Furthermore, this system is time-consuming, inefficient, and
low-throughput.

Genome editing tools can also be used for chromosomal
integration of biochemical pathways, which is the preferable
method for gene expression compared to plasmid-based
expression. In addition to gene deletion, the conventional λ-
Red recombineering system can enable chromosomal integra-
tion of DNA modules with a size of up to 2,500 bp in
bacteria.125 Furthermore, several λ-Red-based techniques for
chromosomal integration of large biochemical pathways were
developed, such as I-SceI cleavage-facilitated recombination,
knock-in/knockout vector-mediated integration, and pSB1K3-
(FRTK) vector aided insertion.125 Notably, integration of an
8.9 kb synthetic Entner−Doudoroff pathway was one of the
large size integrations that could be achieved using λ-Red
machinery.126 Integration of pathways larger than 10 kb in a
single step using this system still remains a challenge. To
address this limitation, the large pathway can be divided into
smaller segments and inserted into the genome through
iterative integration. For example, a 15 kb DNA encoding
sucrose and lactose consumption pathways were previously
divided into four fragments around 3 kb each and then
iteratively integrated into the E. coli chromosome.1 In addition
to the λ-Red recombineering system, integrases can be used to
permanently introduce biochemical pathways to the ge-
nome.127 Integrases perform site-specific recombination of
small sequences of DNA called attachment (att) sites to
precisely rearrange DNA. The recombination event catalyzed
by serine integrases is highly directional and can only be
reversed using an accessory protein called a recombination
directionality factor. Previously, an intermolecular site-specific
TG1 integration system was developed to enable efficient
recombination between the attB site on plasmid DNA and the
corresponding att site on the genome of E. coli.128

Furthermore, the two compatible integrase systems from
phages ΦC31 and ΦBT1 enabled successive three- and two-
copy integration of pristinamycin II biosynthetic gene cluster
in Streptomyces pristinaspiralis.129 A phage serine integrase-
mediated site-specific genome engineering technique also
enabled the integration of a butyric acid production pathway
from Clostridium acetobutylicum into the Clostridium ljungdahlii
genome.130

Several classical tools have been developed for the stable
integration of biochemical pathways via HR in S. cerevisiae. The

series of yeast pRS integration vectors enable single-locus
integration and can be used to introduce a heterologous gene
into S. cerevisiae by homologous integrative recombination
events at auxotrophic loci.131 Nevertheless, superfluous
sequences, including the bacterial selection marker and origin
of replication of E. coli, are also integrated, which might lower
the integration efficiency. DNA assembler is another single-
locus integration technique and was developed for chromoso-
mal integration of multiple expression constructs, such as
xylose utilization and zeaxanthin biosynthetic pathways, with
high efficiencies.132 Nevertheless, this method discourages the
use of repetitive elements, such as promoters and terminators,
which can result in direct repeat recombination. To address
this limitation, a set of URA3-based plasmids was designed to
enable stable integration of multigene pathways using identical
promoters or terminators or multiple copies of the same
gene.133 The integration sites were separated by genetic
elements necessary for growth to prevent strain propagation if
genes were lost through direct repeat recombination. Strategies
for efficient multilocus chromosomal integration in S. cerevisiae
were also developed to facilitate strain engineering. The
Directed-Pop-Out Plasmid system allowed a simple two-step
scarless integration method and contained a new set of
counterselectable markers, which enabled serial integration
followed by a transformation-free marker rescue event.134 In
another study, a new set of integrative vectors, Easy-
CloneMulti, which combined consensus sequences targeting
Ty sequences and a quickly degrading selection marker, was
constructed to enable simultaneous integration of multiple
genes in S. cerevisiae.135

2.2.1.2. CRISPR/Cas-Based Genome Editing Tools. While
the classical methods for genome editing have been widely
applied in metabolic engineering, a dominant marker must be
integrated into the chromosome for selection purposes. Marker
removal necessitates the use of recombinase, which renders the
genome editing process time-consuming and laborious. The
recently developed CRISPR/Cas system has revolutionized
metabolic engineering and allowed elegant yet powerful
marker-less genome editing.136 A single guide RNA
(sgRNA), which contains a spacer sequence complementary
to the targeted DNA sequence, forms a complex with a DNA
endonuclease enzyme Cas9. The complex then binds to the
genomic target dictated by the spacer sequence. Upon binding,
Cas9 creates a DNA double-strand break (DSB), which is then
repaired by either HR with a homologous repair donor or
nonhomologous end joining (NHEJ). NHEJ is intrinsically
mutagenic and creates random indels at the cleavage site. Indel
mutations occurring in coding exons may introduce premature
stop codons or frame-shift mutations, leading to the deletion of
the corresponding proteins. HR is the preferred method for
DNA repair in genome editing because it allows precise and
accurate editing. Furthermore, because the DSB created by the
CRISPR system is lethal, HR serves as a positive selection,
making marker-free integration possible. In microorganisms in
which NHEJ is predominant over HR, such as Y. lipolytica,
disruption of KU70 and KU80 genes, which are responsible for
DSB repair in the NHEJ pathway, can cause the cells to switch
to mainly HR-based DNA repair.137 Nevertheless, deletion of
NHEJ-related genes can potentially decrease the overall DNA
transformation efficiency.138 Overall, while off-target modifi-
cations is a possible occurrence, CRISPR/Cas9 is an
indispensable tool in metabolic engineering and has been
implemented with high editing efficiencies in various
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organisms. Here we discuss the application of CRISPR/Cas9
for gene deletion, integration of biochemical pathways, and
substitution and diversification of biological parts. We refer
readers to some recent in-depth reviews covering CRISPR/
Cas-based systems for genome editing tools.136,139

CRISPR-Mediated Gene Deletion. To achieve gene knock-
out using the CRISPR/Cas9 system, a sgRNA can be used to
introduce a DSB inside the target gene followed by repair using
an HR donor carrying homology arms flanking the targeted
region. The first CRISPR/Cas9-mediated genome editing
system for E. coli employed ssDNA as an editing template and
could achieve gene deletion with 65% efficiency.33 The
CRISPR/Cas9 system for E. coli was later improved and
could perform gene deletions with near 100% editing efficiency
using both ssDNA and dsDNA as editing templates.33 It was
observed that the efficiency with ssDNA as an editing template
decreased dramatically with the increased length of the deleted
sequence, while the efficiency with dsDNA was more than 90%
with a deleted sequence as long as 12 kb. For S. cerevisiae, the
first CRISPR/Cas9 system employed a 90-bp double-stranded
oligonucleotide as the HR template.140 The donor was
centered around the protospacer adjacent motif (PAM)
sequence and contained 2 bp changes to mutate the PAM
sequence and incorporate a premature TAG stop codon. This
system was able to achieve 100% knockout efficiency of the
CAN1 gene. Because desired genome editing could only be
attained when all components (i.e., Cas9, sgRNA, and HR
donor) are transformed into the same cell, multiplex genome
editing can suffer low efficiency when multiple DNA molecules
need to be cotransformed. To counter this issue, the homology
integrated CRISPR/Cas (HI-CRISPR) system was developed,
in which an HR donor was harbored on the CRISPR/Cas9
plasmid to ensure cotransformation of both the CRISPR/Cas9
system and HR donor. HI-CRISPR could perform multiplex
gene knockout of ATF2, GCY1, and YPR1 with an efficiency of
100%.141 A CRISPR/Cas9 system was also developed for gene
deletion in microorganisms with strong NHEJ such as
Rhodosporidium toruloides.142 An HR repair template was not
necessary because the NHEJ pathway could generate indels
near the cut site, resulting in frameshift mutations. Never-
theless, precise and controlled site-specific gene deletions can
be challenging in these organisms.

CRISPR-Mediated Integration of Biochemical Pathways.
Marker-free integration of biochemical pathways can be
achieved using the CRISPR/Cas9 system. As an early
application in metabolic engineering, the CRISPR/Cas9
system was used to integrate the β-carotene synthetic pathway
and several genomic modifications into the genome of E. coli.33

Furthermore, a multistep CRISPR/Cas9-based chromosomal
integration strategy was developed by dividing a 9.7 kb DNA
fragment, including eight genes in the pyrimidine operon of
Bacillus subtilis F126 into multiple small fragments with the
appropriate size followed by successive integration of those
fragments into E. coli.143 In another study, CRISPR/Cas9 was
used to integrate into S. cerevisiae a lactose transporter from
Kluyveromyces lactis and a heterologous 2′-fucosyllactose (2′-
FL) biosynthetic pathway consisting of enzymes Gmd, WcaG,
and WbgL from E. coli.144 Multiplex integration can also be
achieved using CRISPR/Cas9, in which sgRNAs targeting
multiple sites are coexpressed or a sgRNA can be used to target
repetitive sequences in the genome. In one study, a sgRNA was
expressed targeting multiple repeat sequences called delta sites
in the S. cerevisiae genome, and up to 18 copies of a set of

genes for xylose utilization and (R,R)-2,3-butanediol (BDO)
production pathway were integrated at the delta sites in a
single step.145

CRISPR-Mediated Substitution and Diversification of
Biological Parts. CRISPR/Cas9 systems can also be used to
substitute native promoters with stronger constitutive
promoters or introduce mutations to existing promoters.
This same technique can be applied to other biological parts as
well. For example, an E. coli strain was engineered to produce
isoprenoid by genomic integration of the cscAKB operon and a
heterologous mevalonate (MVA) pathway. CRISPR/Cas9 was
used to substitute the promoters driving the MVA pathway
with the stronger T7 promoter.146 In another study, the
expression of the first enzyme in the citric acid cycle, citrate
synthase, was reduced by modifying the promoter region.147

Four different 5′-untranslated region sequences with different
strengths were designed and directly edited on the genome
using the CRISPR/Cas9 system.

2.2.2. Gene Regulation Tools. Optimizing the flux
through a biochemical pathway to maximize production of
the target molecule demands tightly regulated and consistent
expression of the genes encoding the enzymes in all cells in a
cultured population.148 Gene regulation systems can be
broadly classified into static regulation and dynamic
regulation.149 Static regulation systems are traditionally used
in metabolic engineering and involve the constitutive
expression of biochemical pathways and tuning of these
pathways through strategies such as promoter engineering,
ribosome binding site (RBS) engineering, and gene copy
number engineering. Engineered metabolic pathways can
compete with the host endogenous machinery for cellular
resources, such as RNA polymerases, ribosomes, ATP, and
cofactors.150 Thus, these engineering pathways can place a
metabolic burden on the host by draining resources from
essential metabolism or causing improper cofactor balance. In
some cases, the expression of heterologous pathways can lead
to growth defects and can reduce the production of the target
product, which is further exacerbated if the final product or
pathway intermediates are toxic. On the other hand, the
development of dynamic control systems is motivated by
natural metabolic control mechanisms, which enable micro-
organisms to adjust metabolic flux and maintain homeostasis
under new environments.151 Dynamic control uses a variety of
signals to activate or repress enzyme expression and flux
toward the desired products. Despite the advantages of
dynamic control over static regulation, it can be challenging
to design the optimal control topology and tune the control
parameters.151 Here we describe several static and dynamic
regulation systems that are frequently applied in metabolic
engineering for production of target molecules.

2.2.2.1. Static Regulation. Static manipulation of metabolic
pathways refers to the use of genetically encoded components
that are expressed constitutively, i.e. independent of changes in
cellular and fermentation conditions. Static regulation can be
achieved using promoter engineering, RBS engineering, gene
copy number engineering, RNA interference, and CRISPR
activation and repression.

Promoter Engineering. Promoters are the foundational and
ubiquitous genetic component that drives gene expression.
Promoter engineering is an efficient method to regulate and
construct promoters with diverse strengths and functions and
has been recognized as a useful tool to precisely regulate gene
expression in synthetic biology and metabolic engineering.152
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Eukaryotic promoters typically contain two modular elements,
a core promoter and an upstream activating sequence (UAS),
while prokaryotic promoters consist of two short DNA
sequences at −10 and −35 positions upstream from the
transition start site. Existing promoter databases, such as
Anderson promoter collection for E. coli and SCPD promoter
database of S. cerevisiae,153,154 have enabled selection of
promoters with appropriate strength ranging from strong,
medium, to weak. Nevertheless, endogenous promoters may
not enable efficient optimization of metabolic flux or
coexpression of multiple genes in metabolic networks because
of poor dynamic range or lack of orthogonality to native
regulations.155 Thus, it can be beneficial to engineer synthetic
promoters with better activity. One strategy for promoter
engineering is hybrid promoter engineering, in which different
promoter elements are combined to create novel promoters. In
one study, a library of hybrid promoters with different
strengths for gene expression in Y. lipolytica was constructed
using combinations of promoter elements from S. cerevisiae and
Y. lipolytica.156 In another study, several UASs were inserted in
front of the core GAL1 promoter from S. cerevisiae, creating a
library of synthetic galactose-inducible promoters with an
expanded dynamic range, in which the best promoter had 2-
fold higher activity than the wild-type GAL1 promoter under a
variety of different carbon sources.157 Furthermore, the activity
of promoter Pylb from B. subtilis was optimized by substituting
−35, −10 core region and upstream sequence with consensus
sequences, resulting in an engineered promoter that exhibited
195-fold increase in superfolded green fluorescent protein
(GFP) expression compared to the wild-type promoter.158 In
addition to hybrid promoters, promoter engineering can be
used to develop minimal promoters, which can reduce the
DNA burden of the plasmid construction process. To obtain
minimal promoters, Alper and co-workers used random
oligonucleotides with different sizes to determine the minimal
sizes of core promoter and UAS sequences, and the strongest
minimal promoter could achieve 70% of the strength of the
stronger constitutive TDH3 promoter.159

In addition to the rational hybrid promoter approach,
promoter engineering can also be achieved through random
mutagenesis, which has been applied to the construction of
promoters with different strengths, leading to the identification
of critical regions in promoters.160 In one study, error-prone
PCR was used to mutate the bacteriophage PL-λ promoter.161

The PL-λ promoter library was used to drive GFP expression
and screened based on the fluorescence of E. coli colonies, and
twenty-two promoter variants were found to span a 325-fold
range of mRNA expression. In another study, to optimize a
cellobiose consumption pathway in an industrial S. cerevisiae
strain, random mutagenesis was performed on the ENO2 and
PDC1 promoters, which were used to drive the expression of a
cellobiose transporter and β-glucosidase, respectively.162 For
further reading, we recommend some reviews on promoter
engineering.155,163

RBS Engineering. The ribosome binding site (RBS) is a
genetic element present in prokaryotic promoters, and RBS
engineering is another efficient approach to tune gene
expression levels in prokaryotic systems. In one study, the
Base Editor-Targeted and Template-free Expression Regula-
tion (BETTER) method was developed to diversify multigene
expression.164 Endonuclease deficient Cas9 (dCas9) editor was
used to target up to 10 tailored RBSs upstream of genes
required for xylose utilization or lycopene production in

Corynebacterium glutamicum165 and synthetic RBSs with
different translation rates designed with the RBS calculator
were used to modulate GPP synthase expression to optimize
limonene biosynthesis in cyanobacterium Synechococcus
elongatus.166 In another study, 82 operons in E. coli were
designed and characterized to determine the sequence and
structural factors that controlled mRNA stability; redesigning
the ribosome binding site was found to lower the translation
initiation rate of the first coding sequence by 35-fold and result
in 11.8-fold decrease in the mRNA level.167

Gene Copy Numbers. In addition to the promoter and RBS,
gene copy number is another genetic element that can be
optimized to improve the production of the target product.
Higher gene copy numbers can be obtained by using high-copy
plasmids or integrating several copies of the gene into the
chromosome. In one study, the flavonoid (2S)-naringenin
biosynthetic pathway was integrated into repetitive rDNA sites
in S. cerevisiae, creating multiple strains with different copy
numbers of the pathway.168 In another study, the genes of
interest and an antibiotic resistance marker were placed
between 1-kb homology regions, and RecA-mediated recombi-
nation of the homology regions led to daughter E. coli cells
with higher tolerance to antibiotic concentrations or higher
copy number of the integrated genes.169 A strategy for
chromosomal integration of genes with several copies was
also developed by leveraging FLP/FRT site-specific recombi-
nation, enabling integration of 15 copies of a single gene or 18
total copies of three genes into the chromosome of E. coli in
one step.113 Another approach to increase plasmid copy
number is to truncate promoters driving the expression of
selection marker genes. Because truncated promoters have
weakened strength, cells need to maintain higher copy
numbers of the plasmid to survive in a selective medium.
Zhao and co-workers truncated promoters driving the
expression of antibiotics markers, KanMX and HygB, leading
to a series of plasmids with stepwise increased copy numbers as
high as 100 copies per cell.170

RNA Interference. Gene downregulation can be beneficial
when the target gene is essential, and thus complete deletion is
lethal. Gene repression in S. cerevisiae can be achieved using
RNA interference (RNAi), which is a post-transcriptional,
gene-silencing mechanism present in eukaryotic organisms.171

RNAi employs an RNA-induced silencing complex to degrade
mRNA transcripts. In particular, Dicer (Dcr) cleaves a double-
stranded RNA to form smaller guide RNAs that target the gene
of interest.172 Argonaute (Ago) then uses the guide RNAs to
degrade the corresponding mRNA, lowering gene expression
levels. In one study, the libraries for expression cDNAs
targeting the whole genome of S. cerevisiae were constructed
and used to identify target genes beneficial in improving xylose
consumption.173 In another study, an RNAi library was also
combined with high-throughput microfluidic single-cell screen-
ing to determine that the downregulation in genes related to
cellular metabolism, protein modification, and cell cycle is
related to increased amylase production in S. cerevisiae.174 In
addition to RNAi, gene knockdown can be achieved using
small regulatory RNAs (sRNAs). Previously, a standard
platform to develop sRNA for down regulation of biochemical
pathways was developed.175 Screening of 101 E. coli sRNAs led
to the identification of micC as the optimal scaffold to engineer
sRNAs due to its high repression capability. Using a library
containing 130 synthetic sRNAs, gene targets that enabled
increase in cadaverine production were identified. The sRNA
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expression platform was then expanded to enable rapid,
multiplexed, and genome-scale knockdowns by utilizing
compatible sets of origins of replication and antibiotic
markers.176

CRISPR Interference and CRISPR Activation. In addition to
RNAi, CRISPRi is another technique to downregulate gene
expression levels. CRISPRi reduces gene expression by
targeting a region near the transcription start site with a
dCas9, creating a steric hindrance that prevents access of RNA
polymerase to initiate transcription.177 The dCas9 contains
mutations in the HNH nuclease and RuvC-like domains and
can still bind to the target region without introducing a DSB.
The level of repression can be further improved by fusing the
dCas9 with a repressor domain, such as the Kruppel-associated
box domain.178 A dCas12a-based CRISPRi system was
constructed to repress multiple target genes in a single
crRNA array in S. elongatus UTEX 2973 with efficiencies
ranging from 53% to 94%.179 In addition to using strong
constitutive promoters to enhance gene expression levels,
CRISPR activation (CRISPRa), in which a transcriptional
activation domain is fused to dCas9, can be used to upregulate
gene expression levels. CRISPRa machinery developed in E.
coli was ported to Pseudomonas putida, and the criteria for
efficient CRISPRa target sites in P. putida, such as distance to
the transcription start site and modified sgRNA targeting
sequences, were found to be similar to those in E. coli.180

Furthermore, simultaneous activation and interference were
achieved by expressing orthogonal Cas proteins, in which one
protein was fused to an activation domain while the other
protein was fused to a repressor domain, with their cognate
sgRNAs targeting the selected genes.181 In another study,
sgRNA-expressing plasmid libraries from pools of array-
synthesized oligos for overexpression and downregulation of
all the genes in the genome of S. cerevisiae were constructed,
enabling genome-scale activation and interference.182 While
CRISPRi and CRISPRa are straightforward to design and can
be used to achieve multiplex gene regulation, they can show
toxicity and off-target effects, and the large size of the CRISPR
systems can increase the metabolic burden on cells.

2.2.2.2. Dynamic Regulation. In contrast to static
regulation, dynamic regulation seeks to genetically modify an
organism to achieve a balance between growth and production
or to shift its metabolism from growth to production in
response to an external environmental signal or internal
metabolic state. Dynamic regulation can be classified into two
different modes: manual induction and autonomous induc-
tion.183 In manual induction, cells are first grown to a target
density and then an exogenous signal, including chemical
inducers, carbon sources, or environmental signals, is
introduced to minimize the cell growth while activating the
production pathways. On the other hand, autonomous
induction relies on key intermediates or quorum signals to
dynamically shift the metabolic flux toward the desired product
without human intervention. We refer readers to some in-
depth reviews covering dynamic control.183,184

Manual Induction Using Exogenous Signals. Chemical
inducers are typically used in bacteria to drive the expression of
biochemical pathways and can be classified into nonsugar
inducers and carbon sources. Anhydrotetracycline (aTc) and
isopropyl β-D-1-thiogalactopyranoside (IPTG) are common
nonsugar inducers and have been used for the production of
various chemicals in E. coli.185−187 Inducible promoter systems
using aTc and IPTG have also been developed for bacterial

species with limited genetic tools, such as C. acetobutylicum and
B. subtilis.188,189 In addition to nonsugar inducers, carbon
sources have been used to induce gene expression. In E. coli,
arabinose is a commonly utilized sugar inducer, while inducible
systems in S. cerevisiae mainly rely on galactose. The
endogenous yeast galactose-inducible (GAL) expression
system has been widely used to induce biochemical pathways
by switching to galactose-containing media following growth
phases in glucose.190,191 Recently, the glucose-inducible system
of P. putida was ported into an E. coli strain with an activated
Entner−Doudoroff pathway, enabling tight control of gene
expression over a wide range of glucose.192

Manual Induction Using Environmental Signals. While
dynamic regulation using exogenous signals is effective,
reversing the induction by exchanging the medium is laborious
and impractical. On the other hand, environmental signals,
such as temperature, oxygen, and light, are low cost, generally
nontoxic, and can be applied and removed from the medium
several times during growth and production phases. Temper-
ature-inducible systems can be controlled externally and are
easily timed. The λ phage major rightward (pR) and leftward
(pL) promoters, which are induced at 42 °C and inactivated at
33 °C, were utilized to develop a heat-inducible system.193,194

The system was used to regulate the expression level of D-
lactate dehydrogenase and L-alanine dehydrogenase in E.
coli.195,196 Cells were grown aerobically at 33 °C followed by
thermo-induction at 42 °C under oxygen-limited conditions. In
another study, the heat-inducible system was used to
downregulate the expression of the isocitrate dehydrogenase
gene (IDH) in an E. coli strain.197 In addition to temperature,
the dissolved oxygen level is another environmental signal that
can be induced easily and reversibly. The nar promoter in E.
coli is induced under anaerobic conditions and was used to
dynamically drive the expressions of genes for production of D-
lactate, 2,3-BDO, and 1,3-propanediol (1,3-PDO).198 Fermen-
tations were initially performed under aerobic conditions at
250 rpm for optimal cell growth, followed by a reduction in
shaking speed to 100 rpm for production under anaerobic
conditions. Furthermore, dynamic control using light is highly
tunable and reversible. Optogenetic switches are typically
derived from the photoreceptors that undergo a conforma-
tional change in response to light.199 Previously, a chromatic
acclimation sensor/regulator (CcaSR) optogenetic system was
developed to control the expression of glucose-6-phosphate
isomerase, a glycolytic enzyme that dictates flux distribution
between Embden−Meyerhof−Parnas (EMP) and pentose
phosphate pathways.200 Using such a system, the EMP flux
could be controlled between 0.5% to 50% of the total glycolytic
flux. In another study, by combining the blue light-activated
EL222 gene expression system with the GAL regulators and a
photosensitive degron domain, two optogenetic gene ex-
pression systems (OptoEXP and OptoINVRT) were devel-
oped, enabling a switch from a light-induced growth phase to a
darkness-induced production phase.201

Autonomous Induction Using Metabolite-Based Biosen-
sors. Unlike several dynamic regulation systems that rely on
the manual introduction of exogenous inducers or environ-
mental signals at a predetermined time, autonomous dynamic
control does not require human intervention and can be
engineered by using metabolite-responsive biosensors. Liao
and co-workers developed the first autonomous dynamic
control system, in which an acetyl phosphate-responsive
promoter was used to control the expression of phosphoe-
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nolpyruvate synthase and isopentenyl diphosphate isomerase.27

The system used acetyl phosphate to sense excess glycolytic
flux and could redirect carbon flux from acetate production
toward lycopene. In another study, an acyl-CoA-responsive
promoter was used to control the expression of ethanol and
fatty acid ethyl ester (FAEE) producing modules.202 As acyl-
CoA accumulated, the two modules were upregulated, enabling
tight control over FAEE production. Furthermore, metabolite-
responsive biosensors could be coupled with CRISPRi and
RNAi to achieve autonomous gene downregulation. For
example, muconic acid and glucosamine-6-phosphate served
as the inducing molecules for dynamic repression of competing
pathways in muconic acid and N-acetylglucosamine produc-
tion, respectively.203,204

Autonomous Induction Using Quorum Sensing. In
addition to dynamic control using metabolite-responsive
biosensors, quorum sensing-based dynamic regulation is
inducer-free and triggered when a certain cell density is
achieved, which is an important parameter in metabolic
engineering. Previously, Prather and co-workers designed a
quorum sensing circuit to degrade the phosphofructokinase-1
gene (pfk-1).205 The pfk-1 was expressed under the PesaS
promoter, which was activated by transcriptional regulator
EsaRI70 V in the absence of N-acyl homoserine lactone
(AHL). As cells grew, accumulation of AHL reduced activity of
EsaRI70 V and eventually turned off the expression of pfk-1.
The same group further developed a layered dynamic
regulation tool by combining the Lux and Esa quorum sensing
systems, enabling independent, simultaneous, and dynamic

activation and downregulation of two sets of genes.206

Recently, a synthetic quorum sensing circuit was developed
in S. cerevisiae by combining the hormone cytokinin system
from Arabidopsis thaliana with the endogenous Ypd1-Skn7
signal transduction pathway.205 The quorum sensing circuit
was further coupled with an auxin-inducible protein degrada-
tion system to achieve autonomous degradation of the growth-
related Erg9p.
2.3. Test

The advancements in measurement techniques, specifically
-omics technologies, have led to improvements in the reliability
and sensitivity of quantitative biology methods. Reduction in
price and easier operation has resulted in a widespread
adoption of many such ‘omics-based tools. Microorganism
characterization via tools such as genomics or metabolomics
offers a deeper look into the microbial processes around
reference and mutant strains, enabling improved design for
metabolic engineering (Figure 6).

2.3.1. Genomics and Transcriptomics. With the advent
of whole genome sequencing (WGS) using next-generation
sequencing (NGS) techniques, it has become considerably
easier to match genotypes to phenotypes in microorganisms.
This has also benefited efforts in metabolic engineering to
reverse engineer favorable phenotypes from microorganisms
screened in natural environments.207 By combining NGS and
ALE, researchers now have the capability to easily piece
together various mutations found in the genomes of high
producing evolved mutants and trace the phenotypes to a set
of causal gene mutations.208 Databases such as ALEdb have

Figure 6. Omics tools for analysis in metabolic engineering. The most applied omics tools for characterization of host and mutant strains in
metabolic engineering roughly fall under two major categories: next-generation sequencing (NGS) and mass spectrometry (MS)-based techniques.
NGS is used for both DNA-Seq and RNA-Seq analysis, while MS-based methods, typically liquid chromatography-MS (LC-MS), are employed for
proteomic and metabolomic analysis.
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further streamlined the process of storing sequenced mutations
and recovering them later for hypothesis testing.209 Apart from
whole genome resequencing after ALE experiments, NGS has
also been used in metabolic engineering for quantitative trait
loci (QTL) mapping to identify loci that grant varying
hydrolysate tolerances to different strains of S. cerevisiae. The
lab strain was then reengineered to contain a subset of the
favorable allelic loci to demonstrate a significant increase in
robustness.210

NGS-based transcriptomics techniques such as RNA-Seq
have also been employed to study the transcriptional profiles of
high performing mutants evolved from ALE experiments to
identify the impact of mutations on the regulatory architecture.
More specifically, in applications tailored toward metabolic
engineering, combining regulatory data with metabolic models
results in improved accuracy of FBA simulations. This was
demonstrated by the IDREAM framework by integrating
metabolic models of S. cerevisiae with the inferred regulatory
networks from transcriptomic data.211 Transcriptomics data
sets, on the whole, are relatively underused for metabolic
engineering applications compared to other omics data sets.212

2.3.2. Proteomics and Metabolomics. Along with the
rise of NGS-based genomics and transcriptomics, improve-
ments in MS techniques have also contributed to a rise in the
use of proteomics and metabolomics analysis within metabolic
engineering research. An often-encountered limitation of
transcriptomics is the lack of correlation between mRNA
transcript levels and enzyme activities, leading to an incorrect
understanding of the genotype−phenotype relationship. One
way to overcome this limitation is to directly measure the
protein copy numbers in a cell population using proteomic
techniques which can serve as a more accurate proxy for
enzyme activity levels. Proteomics-guided metabolic engineer-
ing, however, is still a nascent field with scarce literature.
Recently, a protocol for proteomic analysis of E. coli tailored
specifically toward downstream metabolic engineering appli-
cations was reported.213 Alonso-Gutierrez and co-workers
developed a statistical analytical workflow for proteomics data
sets, which performed principal components analysis (PCA)
on such data.214 Known as PCA of proteomics (PCAP), the
method applied PCA to proteomics and target molecule levels
to highlight specific enzymes that require modulation to guide
metabolic engineering efforts. Analysis via this method was
used to overexpress the downstream enzymes of the
mevalonate pathway in E. coli and maintain a balanced
expression of the remaining enzymes, resulting in a 40%
increase in the production of the terpenes, limonene, and
bisabolene. Within metabolic engineering applications, proteo-
mic data sets have also been used to engineer higher tolerance
to inhibitors. Proteomic analysis of the stress response of an E.
coli strain grown in different inhibitor conditions identified a
list of differentially expressed proteins that showed a clear
tolerance response to stress. Overexpressing the most differ-
entially upregulated protein from this list, YcfR, resulted in an
engineered E. coli that showed higher growth fitness when
exposed to stressors such as acetic acid, furfural, and phenol.215

Although proteomic analysis generates a useful snapshot of
cellular resource allocation, it does not provide the full picture
of carbon distribution within metabolism. Thus, a better
understanding of accumulations and bottlenecks is often
obtained by performing metabolomic analysis of host micro-
organisms instead. The implementation of mass spectrometric
analyses of microbial strains for metabolomic analysis of

metabolite species has been extensively studied and reported in
literature.216,217 Gold and co-workers applied a protocol for
targeted metabolomics to overproduce L-tyrosine in S.
cerevisiae.218 The study utilized targeted metabolomics of
certain metabolites to assess the efficacy of different strain
engineering strategies, including expression of tyrosine feed-
back resistant genes and global engineering of central carbon
metabolism. Metabolomic data also has the potential for
integration into FBA frameworks via methods like MetDFBA,
which allow for more accurate flux profile predictions, enabling
better designed mutant strains in the future.219 Published data
sets of metabolomic analysis of mutant libraries, such as
transcriptional factor knockouts, can expand the accessibility of
systems-level metabolic engineering efforts to the larger
scientific community.220

2.3.3. Fluxomics and 13C Metabolic Flux Analysis.
Fluxomics refers to the variety of techniques used to estimate
metabolic fluxes. Reaction rate fluxes are a better representa-
tion of the dynamic metabolic trends compared to
metabolome measurements, which only provides a static
snapshot of metabolism. Thus, flux measurements are
considered more informative for strain engineering efforts.221

However, measurement of fluxes in vivo is not straightfor-
ward because flux is not an observed but a calculated
phenotype. Calculation of every reaction flux would require
time series measurements of every participating metabolite,
which is not possible. Thus, computational methods are
employed where stoichiometric models of metabolism are
solved at metabolic steady state to obtain reaction flux values.
One such method, known as flux balance analysis (FBA),
employs metabolic stoichiometric models to predict flux values
by solving an optimization problem involving a steady-state
constraint.222 To constrain the space of possible flux solutions,
experimentally measured rates of extracellular transport are
employed as constraints. To further constrain the solution
space, thermodynamic constraints are also enforced to ensure
thermodynamic feasibility of the flux solutions.223,224

The inclusion of isotopic tracers, mathematical models, and
high-resolution mass spectrometric analysis has enabled the
inclusion of better constraints for flux calculations, thus
increasing the accuracy of flux predictions. 13C metabolic flux
analysis (13C-MFA) is used to trace the flow of carbon through
metabolic pathways by introducing 13C-labeled substrates into
a microorganism’s growth medium and then by analyzing their
incorporation into intracellular metabolite pools via MS.225 In
recent years, rigorous work has been done to develop reliable
methods for isotopic flux analysis, including work in
experimental design, MS analysis, as well as computational
techniques to calculate flux values.226,227

Isotopic flux analysis has been employed to identify
bottlenecks that can help lead to overproduction of target
molecules.228 13C labeling data is also shown to be useful in
constraining the prediction space of GEMs, serving as an
additional data set for integration in mathematical models.229

Various review articles in recent years have addressed the
benefits and limitations of employing isotopic flux analysis in
metabolic engineering.221,225,230

2.3.4. In Vivo Biosensors. Evolutionary or combinatorial
approaches have been increasingly used for metabolic
engineering. However, despite the availability of various MS
techniques, screening and evaluating the phenotypes of
modified microorganisms remain a challenge. Besides, real-
time monitoring of metabolite concentrations is critical for the
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dynamic regulation of metabolic networks, which are rarely
captured by techniques mentioned previously. Alternatively,
biosensors have emerged as an enabling high-throughput
technology for faster screening, selection, and study of
metabolically engineered strains.231−234 Biosensors are typi-
cally genetically encoded components, either proteins or
nucleic acids, but they can also be derived from the naturally
occurring biosensors that reflect changes in the intracellular
metabolite concentration by transducing the metabolite
interaction into a detectable output signal like gene
expression.235,236 These biosensors are often linked with
other techniques like flow cytometry, MS, or colorimetric
assay to measure intracellular metabolites quickly.237 Bio-
sensor-coupled screening of metabolic regulation has been
explored in the prokaryotic and eukaryotic organisms,
including plants.238,239

Transcription factor (TF)-based biosensors are the most
adeptly used protein-based biosensors in metabolic engineer-
ing. TFs often possess ligand-binding domains that bind and
sense small molecules such as amino acids, lipids, intracellular
metabolites, sugars, and other metabolites or environmental
stressors. TFs responsive to these natural metabolites have
been used to engineer biosensors for metabolic engineering
applications.250 A variety of metabolite-responsive biosensors
have been successfully used in designing synthetic gene circuits
capable of detecting different amino acids, acids, secondary
metabolites, fatty acids, fatty acyl-CoA, malonyl-CoA, and
alkanes.234,240−243 Recently, Borodina and co-workers em-
ployed a biosensor for cis,cis-muconic acid (CCM) coupled
with GFP expression for high throughput screening of yeast
UV-mutagenic libraries, where high GFP expressing cells,
corresponding to high CCM concentrations, were sorted using
FACS helping identify a mutant capable of producing 49.7%
higher CCM.237 A challenge associated with natural biosensors
is that they are specific to the cognate ligands and have lower
responses to effector molecules. Liu and co-workers utilized
the continuous evolution system, OrthoRep, to evolve the
CCM biosensor, BenM, to achieve a higher dynamic range and
higher activity toward desired cognate ligand (CCM) and
noncognate ligand (adipic acid). Evolved biosensors outper-
form the parent BenM-based biosensors by achieving a 180-
fold higher dynamic range and a broadened operational
range.244,245

Another type of protein-based biosensor are Förster
resonance energy transfer (FRET)-based biosensors, which
have been developed to sense sugars, amino acids, pyruvate,
lactate, redox conditions, and environmental stressors.231 The
design of FRET-based biosensors involves metabolite binding
protein (MBP) fused in the middle of two fluorescent proteins,
including a donor and an acceptor. The binding of a ligand
molecule to MBP creates a conformational change and
modulates energy transfer from donor to acceptor protein,
producing a detectable output. Ahmad and co-workers
developed FRET-based biosensors for real-time monitoring
of intracellular lysine concentration in bacterial and yeast
systems. The lysine binding periplasmic protein (LAO) from
the Salmonella enterica LT2 strain was linked with the cyan
fluorescent protein (CFP) and yellow fluorescent protein
(YFP) to develop the FRET-based biosensor system.246

Further, the dynamic range of lysine detection was expanded
by performing mutagenesis in the region critical for lysine
binding. Zamboni and co-workers developed a trehalose-6-
phosphate (T6P) FRET system to visualize the intracellular

T6P accumulation under in vivo microscopy in different
osmotic stress conditions.247 Recently, Pohl and co-workers
developed a FRET-based glucose biosensor applied to glucose
monitoring in microbioreactor cultivations of E. coli and C.
glutamicum.248 Overall, monitoring metabolites based on
FRET biosensors shows a wide variety of applications in
metabolic engineering, biomedicine,249 pharmacology, toxicol-
ogy, and food sciences.250 However, challenges still lie in
identifying specific MBPs to develop new FRET-based
biosensors.

Lastly, riboswitches are transcription-based RNA biosensors
that are usually built upon aptamer domains to either facilitate
or disrupt the formation of a terminator, which creates
transcriptional repression or activation by preventing the
synthesis of long mRNAs. The main advantage of riboswitches
is their improved response time compared to protein-based
biosensors.234,251,252 Such RNA biosensors are usually only
specific to limited metabolites, such as folinic acid and
theophylline, due to limited availability of aptamers.241

Weinberg, Hartig, and co-workers recently identified a new
class of guanidine riboswitch called the guanidine-IV, where
motifs associated with guanidine exporter associated sugE were
identified via a bioinformatics approach. The efficacy of the
new riboswitch was confirmed by addition of 5 mM guanidine,
which resulted in an 80-fold increase in GFP response in
Staphylococcus aureus.253 These findings have opened the door
to the identification of new metabolite-binding RNAs, which
are needed for designing improved regulatory circuits in
metabolic engineering.
2.4. Learn

Learn is primarily composed of computational tools applied to
metabolic hosts. They have been indispensable for their ability
to help identify meaningful biological patterns and discover
engineering targets. The goal of these computational tools is to
design strains from first-principles, gain further insight on
metabolism, help influence knowledge-guided design, unify
multiple data modalities, and achieve TRYs that might not be
achievable through evolutionary engineering. There are an
abundant number of different approaches to modeling in
metabolic engineering, which can be grouped into three
categories: (1) genome-scale models (GEMs), (2) kinetic
models, and (3) ML models. We discuss the core principles of
these methods and reference a few key examples.

2.4.1. Genome-scale Models. GEMs are network
representations of metabolic pathways that include information
about the topology and stoichiometry of the reactants and the
products involved in each reaction.254 The stoichiometric
coefficients are represented compactly in the form of a single
stoichiometric matrix. GEMs can be solved at the metabolic
steady state to obtain the flux vector consisting of reaction
rates at steady state. As the linear equations being solved are
underdetermined, additional constraints are often imposed to
reduce the feasible solution space. Constraints are often
derived from prior biological knowledge such as lower and
upper bounds on flux values. Extracellular measurements of
metabolites can also be used to obtain rates of cellular uptake
or secretion, and they can be included as additional constraints.
While the stoichiometric, inequality, and measurement
constraints narrow the solution space considerably, the linear
equations that remain undetermined allow for multiple flux
vector solutions. Thus, an optimization problem is solved for a
phenotypic objective, most often growth, and the flux vector
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Figure 7. Genome-scale models (GEMs) in metabolic engineering. GEMs are mostly used with flux balance analysis (FBA) to generate flux profile
predictions at metabolic steady state. To construct a GEM, extensive knowledge of the metabolic reactions at the genome-scale is required, which
are transcribed as a stoichiometric matrix (S). The linear algebra equation is solved at steady state and used to constrain the solution space for an
acceptable flux vector. OptKnock is a commonly used algorithm that optimizes an objective function (related to a metabolic engineering objective)
and solves an FBA problem underneath to obtain flux vectors corresponding to the engineering objective.

Figure 8. Kinetic models in metabolic engineering. (A) The construction of kinetic models of a metabolic system requires knowledge of the
reaction pathways and network topology. Here, D is the target chemical and C is a byproduct. (B) Ordinary differential equations (ODEs) are
written to model the rate of change of each metabolite within the model, with Michaelis−Menten rate expressions commonly used. (C) Integration
of the ODEs is used to predict the dynamical trajectories and steady-state concentrations of the metabolites. (D) Metabolic control analysis (MCA)
is performed to shed light on the sensitivity of each parameter within the model on the concentrations of metabolites. Here, the rows represent
model parameters and columns represent the metabolites C and D. Higher positive values imply that increasing the parameter increases the
corresponding metabolite concentration, and higher negative values imply vice versa. (E) From the MCA heatmap, it can be inferred that down-
regulating or knocking out reaction V2 can increase the concentrations of the target metabolite D. Thus, the model is modified to knockout reaction
V2. (F) In silico prediction of the engineering strategy shows that such an intervention can help improve concentration of D, thereby helping in the
design of an overproducing mutant strain.
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satisfying these criteria is obtained. This methodology is
known as flux balance analysis (FBA).222

GEMs and their analysis using FBA are one of the most
common mathematical frameworks to model metabolic
phenotypes for the purpose of metabolic engineering. Iterative
updates to GEMs and the publication of consensus models
have led to well-characterized GEMs for numerous model
organisms such as E. coli, S. cerevisiae, cyanobacteria, and
Chinese hamster ovary (CHO) cells. A recently published
consensus-based GEM of S. cerevisiae, named Yeast8, offers the
incorporation of enzyme constraints to obtain accurate flux
solutions in a better-constrained flux space.255 This feature was
employed to improve the phenotype of protein secretion
experimentally in S. cerevisiae.256

While GEMs offer insight into the metabolic behavior
around a desired phenotype, they do not directly suggest
genetic interventions required to achieve such a phenotype.
Several algorithms have been implemented that impose an
optimization condition along with the FBA framework to
achieve a metabolic engineering target. The algorithm known
as OptKnock22 solves optimization problems at two levels: at
the outer level, it identifies gene knockouts that couple cellular
growth to the production of a target molecule, and at the inner
level, it optimizes a cellular objective for each of the tested
perturbations from the outer level, as described in the FBA
method above. The algorithm was later evolved to include
kinetic constraints, known as k-OptForce (Figure 7).257

2.4.2. Kinetic Models. Kinetic models are another type of
mathematical framework that allows the prediction of
metabolic states in time. The models use reaction rate
expressions, such as mass action, Michaelis−Menten, or Hill
kinetics to model the rate of reactions of processes such as
synthesis, degradation, enzymatic conversion, or metabolite
transport. The rate expressions can also accommodate
regulation in the form of allosteric or transcriptional effects.
These expressions are then linked to each other in the form of
ordinary differential equations, where each equation is
expressed as the mass balance of a given metabolite within
the model. The complete set of differential equations
containing the rates of formation and consumption of each
metabolite within the model constitutes a kinetic model of
metabolism. The capability of kinetic models to predict
metabolite levels and reaction rates (metabolic fluxes) over
time within a modeled biosystem makes them a valuable tool
for designing metabolic engineering strategies aimed at the
overproduction of target molecules.

Kinetic models are commonly utilized in conjunction with
metabolic control analysis (MCA),258 a method of analysis that
computes the sensitivity of any model output with respect to a
model parameter. Several commonly studied forms of
sensitivity are available in strain design for metabolic
engineering. The first is known as flux control coefficient,
which indicates the expected change in a metabolic flux to
variations in a parameter, typically enzyme activity or
concentration. A second commonly studied metric is the
concentration control coefficient, which indicates the expected
change in the concentration of a metabolite to variations in
enzyme activity. Therefore, MCA can be employed to guide
insightful decisions while constructing microbial strains by
utilizing the above control coefficients to predict bottlenecks
and suggest solutions (Figure 8).259

Kinetic models that emulate large-scale biosystems with
numerous biological components often contain many param-

eters. The estimation of these parameters relies on the
availability of high-quality biological data, most commonly
metabolite and flux measurements, which are often accom-
panied by proteomic and transcriptomic measurements. Such
measurements are challenged by experimental throughput,
sensitivity, and signal-to-noise ratio. Thus, the use of kinetic
models to predict phenotypic behavior of large-scale
biosystems is restricted by uncertainty in parameter estimation,
which often leads to phenotypic predictions by kinetic models
being accompanied by large confidence intervals. To address
this limitation, several studies have turned toward ensemble
modeling of metabolism.260 Ensemble modeling employs the
same underlying structure as kinetic models described above.
However, instead of constructing a single kinetic model with a
single set of estimated parameters, ensemble modeling
constructs a population of models, each with their own set
of parameters. The values for these parameters are estimated
via sampling schemes such that the models satisfy constraints
of thermodynamics, like reaction reversibilities. Employing an
ensemble of metabolic models to predict phenotypic behavior
allows for the prediction of a distribution of values instead of a
single value, thus offering a precise confidence interval of such
a prediction. The ensemble modeling framework was
employed in combination with a genetic algorithm to construct
a genome-scale kinetic model of E. coli metabolism.261 In short,
an ensemble of models was first constructed on the basis of
steady-state flux data of the reference strain. Then a genetic
algorithm was used to cross different parameter sets from the
ensemble while minimizing the mismatch between exper-
imental data and model predictions to identify the best
combination of parameters that resulted in the lowest
mismatch. This final parameter set resulted in a kinetic
model that could accurately predict the product yields of 24
metabolites with a Spearman correlation coefficient of 0.84.

Another framework within kinetic models that employ MCA
to study metabolic networks is the Optimization and Risk
Analysis of Complex Living Entities (ORACLE).262 Within
this framework, flux and/or concentration values are uniformly
sampled, and samples are rejected or accepted based on
thermodynamic constraints. The ORACLE method was used
to identify metabolic engineering targets for the production of
1,4-butanediol in E. coli.263

2.4.3. Machine Learning. Broadly, ML is a set of methods
that uses algorithms that learn from experience without explicit
instructions. In direct contrast to mechanistic models including
GEMs and kinetic models, ML models are not often readily
interpretable for biology. Lack of intrepretibility affords ML
models to have a great deal of flexibility in combining
multiomics data and expressivity in modeling complex
nonlinear relationships, but it positions them one step further
from causal explanations. Currently, ML is used at every stage
of the systems metabolic engineering pipeline from feedstock
to target product recovery.111,264 The majority of the studies
published related to both metabolic engineering, and ML can
be roughly categorized into either design or characterization.
ML for design aims to learn from data to suggest improved
future designs, while ML for characterization aims to broaden
knowledge over a specific domain for improved rational
engineering or support of computational design pipelines. The
most common classes of ML algorithms applied to metabolic
engineering fall into supervised ML, where a model is trained
to predict on a labeled data set and unsupervised ML where a
model helps to identify patterns in an unlabeled data set. ML
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consists of a vast set of methods, so to limit scope, we will
focus on design and characterization that helps engineer
organisms to overproduce a target molecule.

ML for design consists of two main components, the first is
to learn a model that can predict the outcome from varied
designs and the second is to choose the next set of designs to
synthesize for improved production. To start the iterative
learning process, design of experiments (DOE) is used for
careful selection from the initial design space.265 To predict the
outcome of new designs, a model learns from training instances
of different designs with their corresponding features and labels
and attempts to predict the label for hidden test instances from
test features. Common predictive models in metabolic
engineering include Gaussian process,266 linear models,267

support vectors machine,268 random forests,269 neural net-
works,270 and ensemble models that combine many of the
previously mentioned individual models.271 Following pre-
dictive modeling, a new design combination is suggested by a
global optimization scheme like Bayesian optimization272 or
genetic algorithm (Figure 9A).22

ML studies related to characterization in metabolic
engineering are more varied in approach, and they typically
consider a much larger data domain such as the space of all
genetic components, all proteins, or all pathways. Their aim is
to further define the components of the cell, which in turn
allows for more plausible engineering targets. Each level of the
organism including gene, pathway, and genome has been the
subject of ML studies that advance the metabolic engineering
project. At the gene level, models have been constructed to

predict promoter strength,273 protein function,274 promiscu-
ity,275 and transcription factor binding domains.276 At the
pathway level, there are models that allow for native pathway
inference277 and prediction of pathway dynamics.37 At the
genome scale, there are models that can help parametrize
GEMs,278 predict cellular phenotypes,279 predict interaction
networks,280 and characterize metabolic networks.281 Because
these models typically operate on a larger data domain under
more general conditions, they learn more generic patterns that
are less useful for context-specific engineering design (Figure
9B). Well-curated databases have allowed for the application of
ML algorithms for characterization, but there is still a need for
more metabolic engineering-specific data sets. Another route
to circumvent this is through literature mining, which can be
used to predict phenotypes over a range of different
environmental and genetic perturbations for different organ-
isms.282,283

3. APPLICATIONS
In this section, we focus on case studies that implement the
DBTL cycle to convert organisms into microbial cell factories
for synthesis of chemicals, biofuels, utilization of different
substrates, and improvement of strain robustness. In each
section, compounds that were produced via comprehensive
strategies were selected to discuss how metabolic engineering
advances microbial production. Figure 10A shows 11 icons
that each represents a particular strategy for metabolic
engineering of a strain.

Figure 9. ML in metabolic engineering. (A) Standard workflow that integrates ML with metabolic engineering. First, a library of variants is
constructed and analyzed by assigning labels to each variant. In this example, we can assume labels are titers associated with a pathway on one of
the plasmid variants. Then, the data about the pathway is converted to a data matrix, where a ML model is trained to predict on the reserved test
data. New variants that are predicted to perform well are then recommended for future design by a global optimization method. (B) ML for
characterization. ML has been used to make inferences at different scales relevant to metabolic engineering. Example tasks include transcription
factor binding and Enzyme Commission (EC) number prediction at the sequence level, pathway inference at the pathway level, and GEM
parametrization at the genome scale.
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3.1. Synthesis of Chemicals

In the past few decades, most metabolic engineering studies
have been focused on the production of chemicals. Below we
will discuss the design and engineering of microbial cell
factories for synthesis of bulk chemicals and fine chemicals.

3.1.1. Bulk Chemicals. Bulk chemicals are commodity
chemicals used at a considerably large scale. Thus, their
production via metabolically engineered organisms has gained
much attention, and extensive effort has been taken in
developing the cell-based production of bulk chemicals, such
as alcohols, amines, and organic acids. Table 1 lists selected
examples of important bulk chemicals with the currently
highest reported titers and the metabolic engineering strategies
associated with engineering production strains. Here, itaconic
acid, 1,4-BDO, and 2-propanol/acetone are selected as case
studies to discuss how metabolic engineering strategies have
been used to enhance the production of bulk chemicals.

3.1.1.1. Itaconic Acid. Itaconic acid is a C5 organic acid and
has been recognized as one of the top 12 building block
chemicals by the U.S. Department of Energy.284 Itaconic acid
could be applied in the polymer industry as a comonomer as
well as in agricultural or medical fields as a bioactive
compound. Microbial production of itaconic acid is catalyzed
by cis-aconitate decarboxylase (CAD), which converts cis-
aconitate, one of the intermediates in the TCA cycle, into
itaconic acid (Figure 10B). Klamt and co-workers constructed

a GEM for optimizing the production of itaconic acid in E.
coli.285 In the final strain, both the acetate formation and
pyruvate formation pathways were knocked out to enhance the
carbon flux toward the TCA cycle. The push strategy was used
to overexpress citrate synthetase (CS), cis-aconitase (ACO),
and CAD. To increase the availability of cis-aconitate, the
isocitrate dehydrogenase (IDH) gene, which is an essential
gene, was knocked down by replacing its native promoter with
a weak one. This GEM strategy enabled E. coli to produce 32
g/L itaconic acid. Furthermore, because cis-aconitate is
unstable and toxic to the cell, the intracellular concentration
of cis-aconitate is quite low. Thus, Guss and co-workers
introduced a noncanonical pathway from Ustilago maydis into
P. putida286,287 to convert cis-aconitate to itaconic acid by
aconitate isomerase (ADI) and trans-aconitate decarboxylase
(TAD) because the trans-aconitate is more stable and nontoxic
to the cell. The yield increased from 0.23 g/g to 0.34 g/g when
changing the cis-pathway to the trans-pathway. The precursor
for itaconic acid is in the mitochondria in eukaryotic cells,
however, the expression of CAD is in the cytosol which creates
an inefficiency in conversion. Liu and co-workers demon-
strated that the overexpression of a mitochondria transporter
(MTT) could enhance the production of itaconic acid by 10.5-
fold in Y. lipolytica.288 Moreover, because the quantification of
itaconic acid is time-consuming, Malys and co-workers
developed a whole-cell biosensor by identifying the novel

Figure 10. (A) Icons of metabolic engineering methods used to annotate case studies. (B) Pathway and metabolic engineering strategies for
production of itaconic acid. Enzymes: CS, citrate synthase; ACO, aconitase; ADI, aconitate isomerase; TAD; trans-aconitate decarboxylase; CAD,
cis-aconitate decarboxylase; IDH, isocitrate dehydrogenase; AKGDH, α-ketoglutarate dehydrogenase; LSC, succinyl-CoA ligase; SDH, succinate
dehydrogenase; FUMA, fumarase; MDH, malate dehydrogenase; MALS, malate synthase. Compounds: Suc-CoA, succinyl-CoA; α-KG, α-
ketoglutarate; OAA, oxaloacetic acid.
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Table 1. List of Several Bulk Chemicals Produced through Metabolic Engineering

chemicals host titer metabolic engineering strategies ref

Alcohol
ethylene glycol (EG) E. coli W3110 108 g/L, 0.36 g/g-xylose, 2.25 g/L/h • screen the best E. coli strain 300

• push−pull
• GEM
• small RNA library

1,3-propanediol E. coli 135 g/L, 0.51 g/g-glucose, 3.5 g/L/h • mine new enzymes 301,302
• cofactor engineering

1,2-propanediol E. coli MG1655 17.3 g/L, 0.18 g/g-glucose,
0.72 g/L/h

• novel pathway construction 303,304

• block the pathway of fermentative product

1,4-butanediol E. coli 125 g/L, 0.4 g/g-glucose, 3.5 g/L/h • GEM 263,295
• cofactor engineering
• energy balancing for cell growth
• medium optimization

1,3-butanediol E. coli 2.4 g/L, 56 mg/g-glucose • block the competing pathway and fermentative
product

305

• screen the best enzyme
• RBS engineering
• gene copy number tuning

2,3-butanediol S. cerevisiae 178 g/L, 2.64 g/L/h • block the competing pathway 306
• redox balancing

1,5-pentanediol E. coli BW25113 0.97 g/L • rewire the amino acid metabolism as a synthetic
pathway

307

• push−pull
• protein engineering
• transcription factor engineering

Amine
12 primary amine E. coli • detectable 12 primary amine • retrobiosynthesis design by rewiring the amino acid

metabolism
112

• 10.67 g/L iso-butylamine from
glucose

1,3-diaminopropane E. coli 13 g/L, 0.1 g/g-glucose, 0.19 g/L/h • GEM 308
• push−pull
• small RNA library

putrescine E. coli W3110 42.3 g/L, 0.26 g/g-glucose,
1.26 g/L/h

• GEM 309

• small RNA library

1,5-diaminopentane C. glutamicum 103.8 g/L, 0.31 g/g-glucose,
1.47 g/L/h

• screen the best C. glutamicum strains 310
• promoter tuning
• transporter engineering

Organic Acid
3-hydroxypropionic acid
(3-HP)

Halomonas
bluephagenesis

154 g/L, 0.93 g/g-1,3-propanediol,
2.4 g/L/h

• transcriptome analysis 311

• screening the best enzyme
• promoter and RBS tuning

K. pneumoniae 102.6 g/L, 0.86 g/g-glycerol,
1.07 g/L/h

• promoter library screening 312

• promoter repetition

lactic acid C. glutamicum • L-lactic acid: 212 g/L,
97.9 g/g-glucose

• push−pull 313

• D-lactic acid: 264 g/L,
95.0 g/g-glucose

• introduce the ED pathway
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itaconic acid-inducible mechanism from Yersinia pseudotuber-
culosis.289 This novel itaconic acid-inducible system is based on
a transcription factor ItcR and ccl promoter, in which ItcR can

activate the transcription of the ccl promoter after binding with
itaconic acid. The biosensor was used to optimize the

Table 1. continued

chemicals host titer metabolic engineering strategies ref

Organic Acid
• redox balancing

glycolic acid E. coli MG1655 65.5 g/L, 0.765 g/g-glucose,
0.85 g/L/h

• block the byproduct formation and product
degradation pathway

314

• push−pull

malonic acid E. coli MG1655 3.6 g/L, 0.1 g/L/h • block the byproduct formation 315
• screen the best enzyme

succinic acid Y. lipolytica 160 g/L, 0.4 g/g-glycerol, 0.4 g/L/h • block succinate degradation pathway 316

glutaric acid C. glutamicum 105.3 g/L, 0.54 g/g-glucose,
1.53 g/L/h

• GEM 317

• transcriptome analysis.
• block the degradation of product precursor

itaconic acid E. coli 43 g/L, 0.6 g/g-glycerol, 1.34 g/L/h • push−pull−block 318

muconic acid C. glutamicum 54 g/L, 0.197 g/g-glucose, 0.34 g/L/h • push−pull−block 319
Amino Acid

lysine C. glutamicum 120 g/L, 0.55 g/g-glucose, 4 g/L/h • isotope flux analysis 320
• in silico flux analysis
• block the completing pathway

Figure 11. Pathway and metabolic engineering strategies for production of 1,4-BDO. Enzymes: PPC, phosphoenolpyruvate carboxylase; SCT,
CoA-dependent succinyl semialdehyde dehydrogenase; HBD, 4-hydroxybutyrate dehydrogenase; HBCT, 4-hydroxybutyryl-CoA transferase; BLD,
4-hydroxybutyryl-CoA reductase; BDH, butyraldehyde dehydrogenase; PNT, pyridine nucleotide transhydrogenase; ABAT, 4-aminobutyrate
aminotransferase; GAB, succinate semialdehyde dehydrogenase; ATH, acyl-CoA thioester hydrolase; TES, thioesterase II. Compounds: PEP,
phosphoenolpyruvate; SSA, succinate semialdehyde; 4HB, 4-hydroxybutyrate; 4HB-CoA, 4-hydroxybutyryl CoA; Hbald, 4-hydroxybutyraldehyde;
GABL, γ-butyrolactone.

Chemical Reviews pubs.acs.org/CR Review

https://doi.org/10.1021/acs.chemrev.2c00403
Chem. Rev. XXXX, XXX, XXX−XXX

U

https://pubs.acs.org/doi/10.1021/acs.chemrev.2c00403?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.2c00403?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.2c00403?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.2c00403?fig=fig11&ref=pdf
pubs.acs.org/CR?ref=pdf
https://doi.org/10.1021/acs.chemrev.2c00403?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


expression of CAD, which led to increased production of
itaconic acid.

As mentioned before, the availability of the precursor, cis-
aconitate, is the main limitation for itaconic acid production.
Therefore, knock-down or knockout of the IDH gene is a key
metabolic engineering strategy. However, the IDH gene is an
essential gene, and deletion of the IDH gene would cause the
cell to be auxotrophic to glutamate. Thus, knocking down and
dynamic control of the expression of the IDH gene are both
prominent metabolic strategies to enhance itaconic acid
production. For knocking down the IDH gene expression, its
promoter has been replaced with the weak promoter for
reduced transcription or the start codon has been changed to
GTG or TGT for reduced translation.285,287 The GTG or
TTG replacement for the ATG start codon resulted in the
increased yields from 0.09 g/g to 0.21 g/g or 0.24 g/g,
respectively. Apart from direct repression of gene expression,
Alper and co-workers implemented the expression of AMP
deaminase to reduce the AMP level, which is necessary for
IDH activity, and this approach increased the production of
itaconic acid by 5-fold in Y. lipolytica.290 As for the strategy of
dynamic control, Guss and co-workers developed a two-phase
fermentation approach, in which cells grew in the first stage,
and after the nitrogen source was close to being exhausted, the
cell transitioned into a production phase to produce itaconic
acid by overexpressing the CAD which was controlled by a
nitrogen biosensor.287 Overall, the cell growth rate increased
from 0.35 h−1 to 0.58 h−1, and the yield increased from 0.24 g/
g to 0.4 g/g using dynamic control. Klamt and co-workers also
demonstrated that expression of the IDH gene under
temperature-dependent dynamic control could enhance the
peak productivity from 0.32 g/L/h to 0.39 g/L/h and the titer
from 32 g/L to 47 g/L.197 Instead of reducing the IDH
activity, Shen and co-workers attempted to overcome the
glutamate auxotroph by decoupling substrate utilization of
glutamate formation and itaconic acid production.291 In this
strategy, glycerol served as the sole carbon source for growth,
and the native xylose pathway in E. coli was replaced by the
Weimberg pathway; thus, xylose was solely converted to α-
ketoglutarate for glutamate formation. This strategy led to an
accumulation of 20 g/L itaconic acid in E. coli without adding
exogenous glutamate.

3.1.1.2. 1,4-Butanediol (1,4-BDO). 1,4-Butanediol (1,4-
BDO) is an important tetracarbon diol and a platform
chemical because it can be converted to industrially important
chemicals, including tetrahydrofuran, γ-butyrolactone, and
polybutylene succinate. Besides, 1,4-BDO serves as a monomer
for biodegradable plastic, such as polybutylene terephthalate
(PBT) and polybutylene adipate terephthalate (PBAT).
Several pathways have been discovered and utilized for 1,4-
BDO production,292 and the main pathway is the CoA-
dependent pathway (Figure 11). The CoA-dependent pathway
begins with succinate, which is an intermediate of the TCA
cycle and converted to succinyl-CoA by succinyl-CoA
synthase. Succinyl-CoA is then converted to 4-hydroxybutyrate
(4HB), which is subsequently converted to 1,4-BDO by a
CoA-dependent reduction process catalyzed by 4-hydroxybu-
tyryl-CoA transferase (HBCT), 4-hydroxybutyryl-CoA reduc-
tase (BLD), and butyraldehyde dehydrogenase (BDH).
Pathway redox maintenance requires several gene modifica-
tions, which can be identified with computational methods.
Hatzimanikatis and co-workers developed a kinetic model
which showed that high precursor concentration, energy

supply, and reducing equivalents contributed to an increase
in the synthesis of 1,4-BDO by 20%. Furthermore, an increase
in the activity of phosphofructokinase and adenosine
triphosphate (ATP) synthase resulted in a nearly 48.5%
increase in 1,4-BDO production.263 Hu and co-workers applied
the CRISPR/Cas system to engineer E. coli by performing site-
specific mutagenesis of citrate synthase (CS) and gene
replacement of the native pyruvate dehydrogenase (PDH)
with Klebsiella pneumonia PDH to enhance the flux toward the
TCA cycle. Furthermore, CRISPR/Cas system was used for
whole-pathway integration, and the engineered strain could
produce 0.9 g/L 1,4-BDO. Finally, the CRISPRi system was
used for blocking the downstream pathway degrading the
precursor of 1,4-BDO. By combining the CRISPRi system to
simultaneously suppress competing genes that diverted the flux
from gabD, ybgC, and tesB, the titer was increased to 1.8 g/
L.293 Meanwhile, slower enzyme kinetics of the downstream
enzymes reduced the conversion efficiency of 4HB to 1,4-
BDO, so the mutagenesis-based strategies (e.g., error-prone
mutagenesis) for butyraldehyde dehydrogenase and butanol
dehydrogenase were applied to improve the accumulation of
1,4-BDO, increasing the titer by almost 4-fold.294 Moreover,
the downstream enzymes 4-hydroxybutyryl-CoA transferase
and butyraldehyde dehydrogenase were modified to increase
the yield by 20%. Furthermore, 1,4-BDO titer of 125 g/L was
achieved by integrating strategies including improvement of
cofactor regeneration, destruction of byproducts, and over-
expression of membrane-bound transhydrogenase.295

3.1.1.3. 2-Propanol and Acetone. 2-Propanol is mainly
used as a disinfectant and is often called rubbing alcohol. It is
also used in pharmaceuticals and personal care products, and it
is used as a solvent for herbicides, pesticides, inks, and
resins.296 Acetone is also primarily used as a solvent, but it can
also be used in the current biofuel infrastructure by enhancing
performance of existing fuels or serving as a precursor to green
diesel or jet fuels.297 2-Propanol and acetone can be produced
together in acetone−butanol−ethanol (ABE) fermentation if
the host microorganism harbors a primary−secondary alcohol
dehydrogenase (sADH) which converts acetone to 2-
propanol.298 Clostridium species have traditionally been used
for ABE fermentation, but the process has been phased out due
to limited selectivity of a single product and high cost of C5
and C6 substrates.297,299 In this case study, Köpke and co-
workers chose Clostiridium autoehthanogenum as their host
strain as it is an anaerobic acetogen, so it does not need light
like other autotrophs, and it makes use of efficient CO2 fixing
pathways. These selection criteria combined with the fact that
there have been significant advancements in engineering tools
for acetogens makes C. autoehthanogenum a good candidate for
scale up gas fermentation.297

The pathway for acetone/2-propanol production starts from
acetyl-CoA, followed by converting acetyl-CoA into 2-
propanol by four cascade enzymes, including thiolase (THL),
CoA-transferase (CT), acetoacetate decarboxylase (ADC), and
alcohol dehydrogenase (ADH) (Figure 12). Thus, accumu-
lation of intermediate acetone is a key step for high 2-propanol
production. Köpke and co-workers first performed enzyme
mining of THL, CT, and ADC and assembled a representative
group of candidate proteins, including 4 THLs, 16 CTs, and 10
ADCs with strong, medium, and weak promoters, which
generated 247 different recombinant C. autoethanogenum
strains. 247 strains produced a wide range of acetone titer,
and the highest titer could reach up to 100 mM, an 11-fold
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enhancement compared to the reference strain. Next, to
further increase the flux to acetone, a GEM was used to
eliminate the unwanted byproducts including 3-butanediol
(2,3-BDO) and 3-hydroxylbutarate (3-HB). One successful
gene knockout was identified for reducing 2,3-BDO, but due to
lack of information in the current metabolic network, gene
targets for reducing 3-HB production were not identified. As
an alternative method to find candidate genes, an in silico
homology search was carried out on enzymes from literature
that perform similar reactions, which led to the identification of
13 gene knockout candidates. However, in vivo characterization
of the 13 candidates was infeasible due to underdeveloped

genetic tools in C. autoethanogenum. Instead of in vivo
characterization, a cell-free strategy called, in vitro prototyping
and rapid optimization of biosynthetic enzymes (iPROBE),
was adopted to determine gene targets. Using iPROBE
individual gene targets were cloned and put into cell-free
reactions to assess the effect of enriching a single target protein
on acetone biosynthesis. Enriched proteins that resulted in low
acetone production helped identify 3 targets among 13
candidate genes for reducing 3-HB production. In vivo
knockout of 3 gene targets identified by iPROBE and one
gene target identified by the GEM resulted in a 27-fold
increase of acetone production with more than 50 mol% yield.
Furthermore, proteomic analysis, kinetic modeling, and
reapplying iPROBE, revealed that the CT is the rate limiting
step in the acetone-production pathway. To address this
bottleneck, an additional copy of CT was overexpressed, and
the acetone productivity reached around 2.5 g/L/h and
selectivity of acetone/2-propanol increased to 40%. Finally,
with expression of mutant ADH and scale-up fermentation to a
120 L fermenter, production rate of ∼3 g/L/h and ∼90%
selectivity was achieved. Further life cycle assessment showed
that the entire process is carbon negative, which means that it
fixes carbon instead of releasing carbon into the atmosphere
like traditional production processes.297

3.1.2. Fine Chemicals. Besides bulk chemicals, microbial
cell factories have been applied to produce fine chemicals.
Table 2 lists several examples of oleo-chemical products that
are produced by engineered microorganisms. Table 3 lists
several natural products that many researchers have worked on
extensively including artemisinin, resveratrol, carotenoid,
heme, and taxol-derived compounds with the highest reported
titers. In this section, artemisinin and omega-3 fatty acids are
selected as case studies to discuss how metabolic engineering
strategies have been used to enhance the production of fine
chemicals.

3.1.2.1. Artemisinin. Artemisinin is naturally produced by a
plant, Artemisia annua, which has a long history of use in
traditional Chinese medicine, and its derivatives were
designated as first-line antimalarial drugs by the World Health
Organization in 2002.321 Until now, microbial synthesis of
artemisinin is the most successful case for the biosynthesis of
natural products and drugs. The effort on metabolic engineer-

Figure 12. Pathway and metabolic engineering strategies for
production of acetone and 2-propanol. Enzymes: THL, thiolase;
CT, CoA-transferase; ADC, acetoacetate decarboxylase; ADH,
alcohol dehydrogenase; AACR, acetoacetyl-CoA reductase; AAR,
acetoacetate reductase. Compounds: 3-hydroxybutyrate, 3-HB; 2,3-
butanediol, 2,3-BDO.

Table 2. List of Representative Oleo-chemicals Produced through Metabolic Engineering

chemicals host titer metabolic engineering strategies ref

Oleo-chemicals
oleoylethanolamide S. cerevisiae 8.1 mg/L, 405.8 μg/g-glucose • host strain engineering to ensure flux toward phospholipids 329

• heterologous enzyme expression to shunt carbon away from native
lipids

• relaxation of native regulation

triacylglycerol S. cerevisiae 1.76 g/L, 0.088 g/g-glucose • push−pull−block: ACC1**, PAH1, DGA1 81
• knockout of lipases

human ceramide-NS S. cerevisiae N/A • introduction of human hDES1 330
• ER localization of hDES1
• push−pull−block of host genes

omega-3 fatty acids Y. lipolytica 56.6% w/w of total fatty acids, 30% of
DCW

•push−pull−block of host genes 328

• introduction of heterologous genes for chain elongation and
desaturation
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ing of artemisinin has been comprehensively reviewed.322 E.
coli was the first engineered microorganism for artemisinin
production and produced 25 g/L of the precursor
amorphadiene through enzyme screening and process
optimization. However, it is hard for E. coli to further convert
amorphadiene into artemisinin because it is unsuitable for the
expression of eukaryotic P450 enzymes. Here, we only briefly
introduce a study based on S. cerevisiae. The goal is to produce
artemisinic acid by the microorganism, and the final step
converting artemisinic acid into artemisinin is accomplished by
chemical conversion under mild industrially favorable con-
ditions. The metabolic pathway and strategies are illustrated in
Figure 13. In the initial attempt, the mevalonate pathway,
geranyl diphosphate synthase (GPPS), and amorpha-4,11-
diene synthase (ADS) were overexpressed in S. cerevisiae
S288C, but only 150 mg/L amorphadiene was produced.323

Additional expression of the cytochrome P450 enzyme from A.
annua and its cognate reductase (CPR1) resulted in 100 mg/L
artemisinic acid. In order to increase the artemisinic acid
production, Regentin and co-workers optimized the culture
conditions and inhibited the sterol production pathway to
increase the precursor availability and the final strain produced

2.5 g/L artemisinic acid.324 Instead of using S. cerevisiae
S288C, Paddon and co-workers attempted to engineer S.
cerevisiae CEN.PK2 with the similar metabolic engineering
strategies developed by Keasling and co-workers while also
optimizing the culture process. However, only 1.6 g/L
artemisinic acid was produced, while a production of
amorphadiene up to 40 g/L was unexpectedly observed,
which indicated that expression of cytochrome P450 is not
sufficient for converting amorphadiene to artemisinic acid.325

Further effort was spent on optimizing the conversion of
amorphadiene to artemisinic acid by exploring additional
cytochrome systems. Because the interaction of cytochrome b5
with cytochrome P450 enzymes can increase the cytochrome
P450 reaction rate,326 cytochrome b5 from A. annua was
expressed in the CEN.PK2 production strain, which resulted in
increased production of artemisinic acid from 0.7 g/L to 2.4 g/
L. Furthermore, the production of artemisinic acid was
increased to 7.1 g/L by overexpressing the A. annua artemisinic
aldehyde dehydrogenase (ALDH) and NAD-dependent
artemisinic alcohol dehydrogenase (ADH) and by deleting
GAL80 for enhanced protein expression. Finally, 25 g/L

Table 3. List of Representative Natural Product Produced through Metabolic Engineering

chemicals host titer metabolic engineering strategies ref

Natural Product
artemisinin S. cerevisiae 25 g/L, 0.156 g/L/h • mine new enzyme 327

resveratrol E. coli BW27784 2.34 g/L • screen the best enzyme 331,332
• promoter replacement
• medium optimization

carotenoid S. cerevisiae lycopene: 2.3 g/L • spatial engineering 333,334
Y. lipolytica β-carotene: 6.5 g/L • promoter shuffling 334,335

E. coli astaxanthin: 432 mg/L, 9.62 mg/L/h • protein engineering for soluble expression 334,336
• spatial engineering
• kinetic model analysis

heme C. glutamicum 309 mg/L. 2.1 mg/g-glucose, 6.4 mg/L/h • screen the best C. glutamicum strain 337
• transcription factor engineering
• membrane engineering

taxol-derived chemicals E. coli 300 mg/L taxadiene • promoter tuning 338,339
• protein engineering

opioids-derived chemicals S. cerevisiae 6.4 μg/L thebaine • modular design 13
0.3 μg/L hydrocodone • protein engineering

• mine new enzymes
• push−pull−block

cannabinoids S. cerevisiae 8.0 mg/L tetrahydrocannabinolic acid • modular design 340
4.2 μg/L cannabidiolic acid • mine new enzymes

• spatial engineering
• push−pull

vinblastine S. cerevisiae 23.9 μg/L • push−pull−block 341
• redox balance
• spatial engineering
• mine new enzyme
• protein engineering
• proteomic analysis
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artemisinic acid was produced after optimizing the fermenta-
tion process.327

3.1.2.2. Omega-3 Fatty Acids. Omega-3 fatty acids are
traditionally produced via marine fisheries, a slow process that
struggles to keep up with the growing market demand for
nutraceuticals. For example, eicosapentaenoic acid (EPA) and
docosahexaenoic acid (DHA) have contributed to increased
market demand as their supplemental health benefits have
become clear. Microbial synthesis of these molecules offers a

promising solution to address the growing demand. Xue and
co-workers engineered a Y. lipolytica strain that produced EPA
at 56.6% of the total fatty acids through microbial
fermentation.328 The researchers integrated a heterologous
pathway that elongates the natively produced linoleic acid
(C18:2 fatty acid (FA)) to a 20 carbon FA, followed by 3
desaturation steps leading to the synthesis of EPA (w-3 C20:5
FA). The integrations were performed using NHEJ and the
sites of random integration were identified using genome

Figure 13. Pathway and metabolic engineering strategies for production of limonene and artemisinin. Enzymes: DXS, 1-deoxy-D-xylulose 5-
phosphate synthase; DXR, 1-deoxy-D-xylulose 5-phosphate reductase; MCT, methyl-D-erythritol 4-phosphate cytidylyltransferase; CMK; MDS, 2-
C-methyl-D-erythritol 2,4-cyclodiphosphate synthase; HDS, 4-hydroxy-3-methylbut-2-enyl diphosphate synthase; HDR, 4-hydroxy-3-methylbut-2-
enyl diphosphate reductase; PDH, pyruvate dehydrogenase; ACCT; MHGS; MHGR; MVK; PMVK; MVD; IDI, isopentenyl-diphosphate
isomerase; NPPS; GPPS; LIMS, limonene synthase; ADS, amorpha-4,11-diene synthase; ADH, artemisinic alcohol dehydrogenase; ALDH,
artemisinic aldehyde dehydrogenase. Compounds: G3P, glyceraldehyde-3-phosphate; DXP, 1-deoxy-D-xylulose-5-phosphate; MEP, 2-C-methyl-D-
erythritol-4-phosphate; CDP-ME, 4-diphosphocytidyl-2-C-methyl-D-erythritol; CDP-MEP, 4-diphosphocytidyl-2-C-methyl-D-erythritol 2-phos-
phate; MEcPP, 2-C-methyl-D-erythritol-2,4-cyclodiphosphate; HMB-PP, 4-hydroxy-3-methylbut-2-enyl-diphosphate; AcAc-CoA, acetoaceyl-CoA;
HMG-CoA, 3-hydroxy-3-methylglutaryl-CoA; MVA, mevalonate; MVA-5P, MVA-5-phosphate; MVA-PP, 5-bisphosphomevalonate; DMAPP,
dimethylallyl pyrophosphate; IPP, isopentenyl pyrophosphate; NPP, neryl diphosphate; GPP, geranyl diphosphate; FPP, arnesyl pyrophosphate.

Figure 14. Metabolic engineering strategies for the overproduction of ω-3 fatty acids involves a combination of push−pull−block deriving from
knowledge-guided design and orthogonal strategies for expressing various desaturases and elonases in the host. Enzymes: C16/18-E, C16/18
elongase; Δ9-D, Δ-9 desaturase; Δ12-D, Δ-12 desaturase; Δ9-E, Δ-9 elongase; Δ17-D, Δ-17 desaturase; Δ8-D, Δ-8 desaturase; Δ5-D, Δ-5
desaturase. Compounds: C16:0, palmitic acid; C18:0, stearic acid; C18:1, oleic acid; LA, linoleic acid; ALA, α-linolenic acid; EDA, eicosadienoic
acid; ETrA, eicosatrienoic acid; DGLA, dihomo-γ-linolenic acid; ETA, eicosatetraenoic acid; ARA, arachidonic acid; EPA, eicosapentaenoic acid.
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walking and genome sequencing. It was discovered that NHEJ-
mediated insertions led to the disruption of the genes PEX10,
LEU2, LIP1, and SCP2. Three of these genes are related to
lipid metabolism, and their disruption led to a positive impact
on the EPA titer. The authors studied the impact of PEX10
inactivation, which resulted in a defective β-oxidation pathway.
The strains with PEX10 disruption contained deformed and
dysfunctional peroxisomes. This defect led to an accumulation
of lipids, resulting in higher titers of EPA as well as other long-
chain polyunsaturated fatty acids such as dihomo-γ-linolenic
acid and arachidonic acid. In all, the engineered strain
contained 30 copies of 9 genes and accumulated EPA at
56.6% of the total fatty acid content, while saturated fatty acids
accumulated at less than 5%. The net accumulation of EPA in
the engineered strain was 15% of the dry cell weight, making it
the highest reported titer of EPA in yeast at the time of
publication. This work constitutes an early example of the

production of a nutritional supplement in yeast to replace
animal-derived products (Figure 14).
3.2. Synthesis of Fuels

Recent awareness of sustainability and eco-friendliness has
drawn attention toward biofuels for their ability to replace
petroleum-based fuels.342 It was estimated that biofuels could
fill 27% of the global demand for transportation fuels by
2050.343 Thus, engineering microbial cell factories for biofuels
production is highly desirable. Table 4 lists several biofuels that
can be produced via metabolic engineering. Here, isobutanol,
limonene, and free fatty acids are selected as case studies of
short-, medium-, and long-chain biofuel to showcase how
metabolic engineering strategies have been used to enhance
biofuel production.

3.2.1. Isobutanol. Isobutanol is an attractive option for
biofuel because its energy density is similar to that of 1-butanol

Table 4. List of Representative Biofuels Produced through Metabolic Engineering

chemicals host titer metabolic engineering strategies ref

Short-Chain Biofuels
propanol E. coli 10.3 g/L, 0.259 g/g-glucose,

0.083 g/L/h
• protein engineering 38

• knockout the RpoS sigma factor to enhance the TCA

2-propanol E. coli 143 g/L, 0.23 g/g-glucose, 0.6 g/L/h • screen the best enzyme set 362,363
• medium optimization
• product extraction

C. autoethanogenum 3g/L/h and 90% selectivity • mine new enzymes
• promoter and enzyme candidate combinatorial library
• kinetic model
• GEM
• cell-free ML assessment by iPROBE
• proteomic analysis

butanol Clostridium
acetobutylicum

130 g/L, 0.31 g/g-glucose, 1.32 g/L/h • metabolic flux and mass balance for selecting a better
pathway

364

• push−block

isobutanol E. coli 50.9 g/L, 0.37 g/g-glucose, 0.7 g/L/h • rewire the amino acid metabolism 345,350,365
• block byproduct formation pathway
• ALE

pentanol E. coli 4.3 g/L • protein engineering 366

isopentanol C. glutamicum 2.76 g/L, 0.1 g/g, 0.058 g/L/h • block the competing pathway 367,368
• screen the best enzyme

isoprene S. cerevisiae 3.7 g/L, 22.9 mg/g-glucose • transcription factor engineering 369
39 mg/L/h • promoter engineering

• protein engineering
Medium-Chain Biofuels

limonene E. coli BL21 (DE3) 3.6 g/L, 0.07 g/g-glycerol, 0.15 g/L/h • push−pull 359
• medium optimization

Long-Chain Biofuels
free fatty acids S. cerevisiae 33.4 g/L, 0.1 g/g-glucose • heterologous pathway for FFA 360

• cofactor engineering
• adaptive evolution

fatty alcohols Y. lipolytica 5.8 g/L, 36 mg/g-glucose, 39 mg/L/h • heterologous FAR expression 370
• bioreactor optimization
• extractive fermentation
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but possesses a higher octane number, which is preferable for
blending into gasoline to reduce engine knocking.344 The
pathway of isobutanol production involves the valine synthesis
pathway, but precursors will be directed to isobutanol instead
of valine (Figure 15).345 In the valine synthesis pathway,

pyruvate is converted to 2-ketoisovalerate by three enzymes,
including the acetolactate synthase (AHAS), keto acid
reductoisomerase (AHAR), and dihydroxy-acid dehydratase
(DHAD). 2-Ketoisovalerate is the key precursor for valine and
isobutanol production, thus, to rewire the flux to the
isobutanol production, two enzymes, including 2-ketoacid
decarboxylases (KIVD) and alcohol dehydrogenase (ADH),
must be expressed. In this pathway, two molecules of pyruvate
will be converted to one molecule of isobutanol, and two
molecules of reducing equivalent are required in the reactions
catalyzed by AHAR and ADH. Thus, redox balancing is
important for isobutanol production because E. coli does not
produce NADPH efficiently during anaerobiosis. To overcome
this limitation, one strategy is to select enzymes utilizing
NADH as a cofactor instead of NADPH. Liao and co-workers
attempted to overexpress the ADH from different organisms
and found that expression of ADH from Lactococcus lactis led
to 8 g/L isobutanol production as compared to 6 g/L using the
ADH from E. coli, which is attributed to the fact that the ADH
from L. lactis utilizes NADH as a cofactor instead of
NADPH.346 While selecting enzymes from different organisms
is a popular strategy, protein engineering is also an eminent
strategy to switch cofactor specificity. Arnold and co-workers
performed site-specific saturation mutagenesis on AHAR, and
one mutant showed a higher specific activity with NADH than
with NADPH (i.e., 0.65 vs 0.07 U/mg).347 In addition to the
engineering of AHAR, the same study also performed the
random mutagenesis of ADH from L. lactis and successfully
enhanced the catalytic efficiency by 29-fold. By utilizing the
mutant ADH, the isobutanol production increased from 1.5 g/

L to 13 g/L.347 A third approach is to increase the NADPH
supply via converting the NADH to NADPH by pyridine
nucleotide transhydrogenase. The same study also demon-
strated that 8.2 g/L of isobutanol could be produced by
overexpression of a pyridine nucleotide transhydrogenase.347

In yeast, pyridine nucleotide transhydrogenase cannot be
successfully expressed, thus Kondo and co-workers regenerated
the NADPH by creating a transhydrogenase-like shunt in
which pyruvate is sequentially converted to oxaloacetate,
malate, and pyruvate by pyruvate carboxylase (PYC), malate
dehydrogenase (MDH), and malic enzyme (MAE). With this
shunt, one molecule of NADH is converted to one molecule of
NADPH, and the production of isobutanol could be enhanced
from 44 mg/L to 83 mg/L.348 In the same study, 12 individual
gene deletions were performed to increase the pyruvate
availability, and the strain with LPD1 deletion showed a 7.5-
fold improvement of isobutanol production.348 Substrate
channeling has also been pursued to increase product
formation. For isobutanol production with enhanced substrate
channeling, Stephanopoulos and co-workers established the
isobutanol pathway in mitochondria and showed a 2.6-fold
improvement (i.e., 635 mg/L).61 In addition, ALE provides an
alternative for enhancing isobutanol production. Smith and
Liao performed random mutagenesis of E. coli to screen for a
strain that could resist a toxic valine analogue (i.e., norvaline).
This resulted in a pull of more flux toward the valine pathway
and enhanced the precursor pool for isobutanol production. By
ALE, a mutant E. coli strain was obtained that improved
isobutanol production from 3.1 g/L to 6.1 g/L.349 With
additional metabolic engineering and process optimization, the
highest isobutanol production could reach 50 g/L with a yield
of 0.37 g/g glucose and a productivity of 0.7 g/L/h.349,350

3.2.2. Limonene. Limonene is regarded as a potential next-
generation jet biofuel because its hydrogenated form has a low
freezing point and is immiscible with water,351 thereby
enhancing cold-weather performance. Limonene is also notable
for its pleasant orange-scented fragrance and its designation as
a Generally Recognized As Safe (GRAS) molecule has driven
demand for the inclusion of limonene in eco-friendly cleaning
products. Limonene and its derivatives are synthesized by
condensing two basic building blocks, isopentenyl diphosphate
(IPP) and dimethylallyl diphosphate (DMAPP). For the
synthesis of the building blocks, there are two main pathways,
the mevalonate (MVA) pathway, and the methylerythritol
phosphate (MEP) pathway (Figure 13).

The MVA pathway is typically found in animals, yeasts, and
some Gram-positive bacteria. On the other hand, the MEP
pathway can be discovered in most Gram-negative bacteria,
green algae, and cyanobacteria.64 In the MVA pathway, MVA
is the key precursor for the biosynthesis of IPP and DMAPP,
thus balancing the overexpression of the acetoacetyl-CoA
transferase (ACCT), 3-hydroxy-3-methylglutaryl-CoA syn-
thase (MHGS), and 3-hydroxy-3-methylglutaryl-CoA reduc-
tase (MHGR) is important for limonene production. It has
been reported that accumulation of the pathway intermediate
HMG-CoA caused the observed growth inhibition in E. coli,352

while it has also been observed that reduced expression of
HMGS and MHGR enhanced MVA production 7-fold.353

Zhao and co-workers tried to improve the limonene
production in E. coli by optimizing the RBS of ACCT and
MHGS expression, and 1.29 g/L limonene was produced.354

Although RBS engineering is an eminent way of optimizing the
MVA pathway, the exact expression level is still not clear. Lee

Figure 15. Pathway and metabolic engineering strategies for
production of isobutanol. Enzymes: AHAS, acetohydroxyacidsyn-
thase; AHAR, acetohydroxyacid reductase; DHAD, 2,3-dihydroxyi-
soverate dehydrogenase; KIVD, 2-ketoisoverate dehydrogenase;
ADH, aldehyde dehydrogenase; MAE, malic enzyme.
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and co-workers performed a proteomic analysis and used the
computational tool PCAP to guide metabolic engineering,
which resulted in over a 40% improvement in the production
of limonene with a titer of 0.605 mg/L in E. coli.214

The MVA pathway starts with acetyl-CoA, followed by a
series of enzymatic reactions to produce the precursor MVA.
In eukaryotic cells, acetyl-CoA is synthesized in several
compartments, such as mitochondria and peroxisomes. There-
fore, repurposing the compartment for chemical production
has been an effective metabolic engineering strategy for
isoprenoid production.64,355 This strategy is also useful for
minimizing the toxic effect of isoprenoids produced by the
MVA pathway.62 On the other hand, the dynamic control also
plays an important role in limonene production in yeast
because the precursor GPP, which pulls flux away from
limonene, will be converted to downstream essential cellular
components, such as sterols, ubiquinone, and FPP for protein
prenylation. Therefore, dynamic control could help cells
accumulate GPP without cell growth impairment for limonene
production. Vickers and co-workers came up with the idea to
dynamically degrade FPPS by N-degron and coupled it with
the ergosterol responsive promoter (i.e., ERG1 promoter) to
express the N-degron-fused GPPS, which resulted in 76 mg/L
limonene production in S. cerevisiae.356 Several groups also
coupled the dynamic control with orthogonal biosynthesis, in
which limonene was produced by the precursor of neryl

diphosphate (NPP) instead of GPP. Kampranis and co-
workers first engineered the limonene synthase to be NPP-
specific and then expressed the mutant limonene synthase with
the NPPS under the control of the ERG1 promoter, which
allowed S. cerevisiae to produce 130 mg/L limonene.357

Another strategy is to express the GPPS under the glucose-
sensing promoter, thereby creating a two-phase fermentation
system where glucose is first directed to produce the essential
component GPP and then the cells enter the production stage
by expressing the NPPS and limonene synthase. With this
approach, the final strain could produce 917 mg/L
limonene.358 Currently, the highest production of limonene
was achieved in E. coli with a titer of 3.6 g/L, a yield of 0.07 g/
g glycerol, and a productivity of 0.15 g/L/h, which is
accomplished by overexpressing the MVA pathway from
different designs of the plasmid library, using proteomic
analysis to determine the amounts of pathway enzymes,
optimizing the IPTG concentration (i.e., tuning the gene
expression), using glycerol as a substrate, and using an
extracted two liquid-phase fed-batch strategy.359

3.2.3. Free Fatty Acids. Numerous studies on lipid
metabolism have enabled considerable metabolic engineering
research to produce lipid-related chemicals in yeast S. cerevisiae.
However, S. cerevisiae is restricted in lipid production
compared to other oleaginous yeasts due to its evolutionary
trajectory toward ethanol production. To address this

Figure 16. Metabolic engineering strategies for the overproduction of free fatty acids involve a combination of knowledge-guided design, cofactor
engineering, orthogonal strategies, and adaptive laboratory evolution. Enzymes: ZWF1, cytoplasmic glucose-6-phosphate dehydrogenase; PGI1,
phosphoglucose isomerase; GND1, isoform 1 of phosphogluconate dehydrogenase; TKL1, transketolase 1; TAL1, transaldolase 1; PYK1, pyruvate
kinase; PDC1/5/6, pyruvate carboxy 1/5/6; IDH2, subunit 2 of mitochondrial NAD+-dependent isocitrate dehydrogenase; MmACL, ATP:citrate
lyase fromMus musculus; RtFAS, fatty acid synthase from R. toruloides; ′tesA, truncated E. coli thioesterase; POX1, fatty acyl-CoA oxidase; FAA1/4,
fatty acyl-CoA synthetase 1/4. Compounds: G6P, glucose 6-phosphate; GδL6P, 6-phosphogluconolactone; 6PG, 6-phosphogluconate; Ru5P, D-
ribulose 5-phosphate; X5P, xylulose 5-phosphate; R5P, ribose 5-phosphoric acid; GAP, glyceraldehyde 3-phosphate; S7P, sedoheptulose 7-
phosphate; E4P, erythrose 4-phosphate; F6P, fructose 6-phosphate; α-KG, α-ketoglutarate; OAA, oxaloacetic acid.
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limitation, Yu and co-workers re-engineered the native
metabolism of S. cerevisiae into that of an oleaginous
yeast.360 First, a platform strain was chosen from a different
study conducted in the same lab that employed a heterologous
pathway for the synthesis of free fatty acids (FFA) in S.
cerevisiae.361 The construction of the platform strain followed
traditional push-pull-block strategies to increase the supply of
the precursor, cytosolic acetyl-CoA (push), increase the flux
toward fatty acyl-CoA and FFAs (pull), and disrupt the
consumption of FFAs elsewhere (block). The resulting
platform strain could produce FFAs at a titer of 7.0 g/L in
fed-batch fermentation. Second, several strategies were
borrowed from the metabolism of oleaginous yeasts to ensure
higher FFA production, such as increasing NADPH supply by
increasing flux through the pentose phosphate pathway,
downregulating flux in the citric acid cycle, thereby pushing
more citrate from mitochondria to cytosol, and decoupling
lipid accumulation to growth by cultivating under nitrogen-
limited conditions. Finally, the authors abolished ethanol
formation by deleting PDC1 from the FFA overproducing
strain. To recover growth on glucose after this deletion, ALE
was performed that resulted in a “synthetic oil yeast” capable of
a high titer of FFA without producing any ethanol. The highest
titer from this study was 33.4 g/L of FFA in fed-batch cultures,
representing the highest reported titer of FFA production in
yeast at the time of its publication (Figure 16).
3.3. Substrate Utilization

Whenever a new biosynthetic pathway is constructed in
microorganisms, glucose serves as the most common choice of

carbon source. Other alternative hexose sugars (e.g., galactose,
mannose, fructose), pentose sugars (e.g., xylose and
arabinose), 3 carbon substrates like glycerol, 2 carbon
substrates like acetate, and 1 carbon substrates (e.g., CO2,
CO, methanol) have been explored as alternative substrates
and have showed additional sustainability benefits, and in some
cases better conversion to products. Here we discuss the
utilization and coutilization of different carbon sources.

3.3.1. Co-utilization of Glucose and Xylose. To reduce
both the dependency on glucose as a carbon source and the
production cost, researchers have shifted focus to the
utilization of alternative, cheap, renewable feedstocks to
produce various biochemicals, and these include lignocellulosic
biomass,371−373 crude glycerol source,316,374−376 and other
carbon sources. Glucose, xylose, and arabinose are the main
carbon sources obtained after the pretreatment of biomass. Co-
utilization of these carbon sources by the microbial system is a
promising approach to reduce cost and at the same time
improve carbon yield. However, co-utilization of mixed carbon
sources (e.g., glucose-xylose/glucose-glycerol/glucose-acetate)
is challenging and requires an intensive rewiring of the
microbial metabolic network.372,377

Numerous model and nonmodel microorganisms can
assimilate different pentoses and hexoses individually, but
they preferably use glucose first and more efficiently than
xylose. When both glucose and xylose are present, micro-
organisms show diauxic growth phases because of carbon
catabolite repression (CCR).372,378 To reduce CCR for
efficient co-utilization of mixed sugars, several strategies have

Figure 17. Co-utilization of glucose and xylose sugars for efficient conversion of lignocellulosic substrates into target molecules. The pretreatment
of lignocellulosic substrates mostly yields glucose and xylose, each of which are transported into the cell via their respective transporters. Rational
engineering strategies to improve co-utilization efficiency involve the inactivation of the CCR, including transporters, to allow the activation of
xylose metabolism. The XylR transcriptional activator serves as a central regulator for the entire xylose metabolism, increasing expression of relevant
genes upon sensing xylose in the cell. Thus, a common strategy involves generating mutations in XylR that show improved binding and activation
of its targets via directed evolution. On the whole-cell level, ALE methods have also been applied to evolve better coutilization phenotypes.
Enzymes: XR, xylose reductase; XDH, xylitol dehydrogenase; XI, xylose isomerase; XK, xylulose kinase; XylR, transcriptional regulator of xylose
metabolism. Compounds: G6P, glucose 6-phosphate; GAP, glyceraldehyde 3-phosphate; F6P, fructose 6-phosphate.
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been implemented, including inactivation or deletion of ptsG,
replacement of native cAMP with a cAMP-independent
mutant, overexpression of xylR (i.e., xylose transcriptional
activator), deletion of araC (i.e., L-arabinose transcriptional
regulator), inactivation of ptsHIcrr operon and overexpression
of galP, and directed evolution of transporter proteins in E. coli
(Figure 17).379 Wang and co-workers adopted ALE to achieve
higher efficiency of xylose fermentation.380 After one round of
ALE, evolved strains showed a point mutation in a transcrip-
tional activator for xylose catabolic operons, either CRP or
XylR (R121C and P363S, respectively). XylR mutants showed
a higher affinity to their DNA binding sites, leading to a xylose
catabolic activation independent of catabolite repression
control. Introducing this mutant into the D-lactate producing
E. coli TG114 improved the product titer by 50%. In another
study, deletion of ptsG in E. coli and further optimization of
glucose and xylose ratio led to consumption of 93% of xylose
and 97% of glucose in 24 h of fermentation and increased
succinate titer to 107.0 g/L.380 A similar strategy was adopted
to produce 15.8 g/L of 4-hydroxymandelic acid381 and 5.2 g/L
of n-butanol from a mixed carbon source in E. coli.382 Because
ptsG inactivation usually alleviates the glucose transportation
rate which affects the growth rate, the Zmglf gene from Z.
mobiliz encoding a glucose facilitator was overexpressed to
stimulate the coutilization of sugars.382 For other organisms
which cannot assimilate xylose as a sole carbon source, the
xylose utilization pathway needs to be introduced to them. S.
cerevisiae can utilize glucose but not xylose. In one study, xylose
reductase (XR), xylitol dehydrogenase (XDH), and xyluloki-
nase (XK) were overexpressed along with the modular
expression of HXT1 transporter to produce ethanol from
mixed sugars. However, xylose consumption was still not
efficient. In another study, mutations were studied in yeast
hexose transporters Hxt7 and Gal2 by calculating the kinetic
properties of the mutant transporters, and a mutation in Gal2
(N376F) was found to yield aglucose-insensitive xylose
transporter.383 Moreover, the xylose utilization pathway
alongside the deletion of RPE1 (i.e., D-ribulose-5-phosphate
3-epimerase) is another way to achieve the coutilization of
glucose and xylose for ethanol production.384

3.3.2. C1 Chemical Utilization. Concerns regarding
climate change and global warming have motivated the
engineering of microorganisms for the assimilation and
utilization of greenhouse gases as a carbon source to produce
molecules. Direct carbon capture from the environment by
recalcification is not cost-efficient, generates secondary
pollution, and often requires advanced technology for carbon
capture. On the other hand, microorganisms such as
photoautotrophs and aerobic chemoautotrophs and plants
can capture C1 gases and convert them into a range of
molecules efficiently. So far, seven natural CO2-fixing pathways
have been discovered: Calvin Benson Bassham cycle (CBB),
Wood−Ljungdahl (WL) pathway, reductive TCA (rTCA)
cycle, 3-hydroxypropionate-4-hydroxybutyrate (HP/HB)
cycle, dicarboxylate/4-hydroxybutyrate (DC/HB) cycle, 3-
hydroxypropionate (3-HP) bicycle, and reductive glycine
pathway (rGlyP).385 These pathways are widely distributed
in different organisms and capable of utilizing C1 sources with
varying efficiency.

3.3.2.1. Natural C1 Utilizing Microorganisms. Naturally,
C1 fermenting organisms include anaerobic clostridial
acetogens, aerobic chemolithoautotrophic like Cupriavidus
necator, and various photoautotrophic cyanobacteria that can

utilize CO2 and produce different chemicals. As an example,
the case study on 2-propanol/acetone discussed earlier uses
acetogenic bacteria. Carbon sources derived from industrial
waste gas (e.g., CO), municipal solid waste (e.g., CO, CO2,
H2), biogas (e.g., CO + H2), and biomass (e.g., CO2 + H2)
were used for production of more than 30 chemicals including
ethanol, 1−3 butadiene, isobutene, and long-chain alcohols.
Acetogenic bacteria employ the WL pathway, which utilizes
either CO or CO2 plus H2 to synthesize acetyl-CoA that can be
further channeled toward biomass or biochemical production.
Nonengineered C. autoethanogenum has been utilized to
convert waste gas into ethanol in continuous fermentation at
the scale of more than 90,000 tons per year.386 Acetogens can
produce ethanol natively but have also been genetically
engineered for the synthesis of a range of non-native
commodity chemicals.

Apart from acetogens, C. necator can assimilate CO2 by using
oxygen or hydrogen as the energy source. Under nutrient
limitation, C. necator can direct its reduced carbon into the
synthesis of polyhydroxybutyrate (PHB) and accumulate PHB
at 70% of total cell weight.387 C. necator was further engineered
to produce 2-propanol at 3.44 g/L in heterotrophic batch
conditions by overexpressing codon-optimized clostridial genes
in a phaB/phaC double mutant.388 By utilizing only
auxotrophic growth, 250 mg/L of 2-propanol was produced.
The alkane biosynthesis pathway was also expressed in C.
necator by heterologously expressing an acyl-ACP reductase
and an aldehyde-deformylating oxygenase in the PHA
knockout strain, which led to the production of up to 4.4
mg/L alkanes.389

3.3.2.2. Synthetic C1 Carbon Assimilating Microorgan-
isms. Because natural C1 carbon assimilating microorganisms
grow slowly, synthetic microorganisms can be more beneficial.
These heterotrophic hosts can attain better growth and are
easier to engineer because of the availability of a genetic
toolbox and detailed knowledge of the cellular metabolisms.
Among them are E. coli, S. cerevisiae, and P. pastoris, which have
been engineered for CO2 fixing as well as utilization of C1
substrates like methanol and formate.385

So far, the CBB cycle, starting with the carboxylation
reaction, where the RuBisCo enzyme fixes C1 in the form of
CO2 in the ribulose biphosphate (RuBP) molecules, has been
explored most extensively for carbon fixation in heterotrophs.
In 2016, Milo and co-workers achieved partial success in the
biosynthesis of sugars and another intermediate responsible for
making biomass by expressing a fully functional CBB cycle in
E. coli. They could only obtained semi-autotrophic growth due
to dependency on the other carbon sources and organic
compounds for reducing power and energy.390 In this
particular study, carbon fixation was performed via a CBB
cycle in which pyruvate was used to produce reducing power
and energy and xylose was used to support a productive CBB
module. Recently, full autotrophy in E. coli was achieved by
employing rational metabolic engineering and ALE. In the
study, all biomass carbon was derived from CO2, and energy
and reducing power were supplied through formate.391 In the
process, RuBisCo/phosphoribulokinase enzymes were coex-
pressed with NAD+ dependent formate dehydrogenase with
additional genetic modification to enable CO2 fixation and
reduction via the CBB cycle. Also, successful autotrophy using
CO2 has been achieved in methylotrophic yeast P. pastoris,
where native genes responsible for methanol assimilation were
blocked by deleting the DAS1, DAS2, and AOX1 genes to
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Table 5. List of Robustness Phenotypes Engineered through Metabolic Engineering

specific conditions host improvements/discoveries metabolic engineering strategies ref

Thermotolerance
ethanol fermentation
at ≥40 °C

S. cerevisiae • 1.91 ± 0.12 fold growth improvement • ALE 92

• 1.50 ± 0.2 fold glucose consumption • GSM
• 1.6 ± 0.09 fold ethanol excretion • MFA
• 1.3 ± 0.08 fold glycerol excretion • transcriptomics

• metabolite quantification
• genome sequencing

Ethanol
ethanol
fermentations
≥120 g/L

S. cerevisiae • 1.80 ± 1.3 fold ethanol titer/tolerance over wild type by adding K+
to media

• media optimization 406

• 1.27 ± 2.2 fold ethanol titer/tolerance with K+ H+ transporter
engineering

• transporter engineering

• overexpression
• metabolite quantification

Furfural and HMF
20 mM furfural and
20 mM HMF

S. cerevisiae • increased tolerance to furfural and 5-hydroxymethyl-2-furaldehyde
(HMF)

• ALE 411−413

• gene target identification • metabolite quantification
• transcriptomics (microarray)

Thermotolerance
fermentation at
40 °C

S. cerevisiae • gene target identification • identifying regulatory network
targets

414

• long-term thermotolerance regulatory network • transcriptomics (RNA-seq)
• gene knockout

Thermotolerance
fermentation at
40 °C

E. coli • production of lysine was increased 5-fold at 40 °C • quorum sensing and regulatory
response for temperature control

415

Low pH
pH of 5.5 Clostridium cellulovorans,

Clostridium beijerinckii
• 5-fold butanol titer improvement when compared against wild
consortia

• Co-fermentation 416

• heterologous gene expression
• gene knockout
• gene overexpression
• ALE

Butanol440

(v/v): butanol 0.20% Synechocystis sp. PCC
6803

• identification of gene targets for butanol tolerance engineering • NGS transcriptomics 417

• 3-phosphoglycerate, glycine, serine and urea related to stress
response

• GC-MS metabolomics

• gene knockout

up to 6% ethanol and
120 g/L glucose

S. cerevisiae • glucose and ethanol tolerance • gTME 29

• 98% of ethanol theoretical yield achieve; 15% improvement from
control

• gene knockout

• 3 mutations on SPT15 responsible for conferred tolerance • gene overexpression
• transcriptomics (microarray)

Biofuel
(v/v): E. coli • identified efflux pumps that could improve biofuel tolerance for:

geranyl acetate, geraniol, α-pinene, limonene, farnesyl hexanoate
• competitive growth assays 86

• 2% geranyl acetate • >50% limonene titer production in limonene production strain • heterologous expression of efflux
pumps

• 0.05% geraniol
• 2% a-pinene
• 0.025% limonene
• 2.5% farnesyl
hexanoate

Short-Chain Alcohol
(v/v): E. coli • 25% enhanced growth rate under • directed evolution of efflux pump 418

• improved growth for other • whole gene random mutagenesis
library

• 0.7% n-butanol • alcohols • growth assay
• 6% ethanol • metabolite quantification
• 0.8% isobutanol
• 0.2% n-pentanol
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reduce the formaldehyde formation rate while generating
reducing power and energy through methanol’s dissimilatory
pathway supported by AOX2.35 Additionally, the enzymatic
machinery involved in the CBB pathway was introduced into
the peroxisome alongside methanol assimilation. The resulting
strain grew continuously with CO2 as a sole carbon source with
the maximum specific growth rate of 0.008 h−1, which was
further improved to 0.018 h−1 by ALE. In a subsequent study,
strains that were further evolved through ALE showed that
mutations affected the activity and transcript levels of the genes
that affect the availability of ATP and NADH.392 In another
report, to increase the rate of CO2 fixation via the Calvin cycle,
20 enzymes involved in CO2 concentrating mechanism
(CCM) were overexpressed from Halothiobacillus neapolitanus,
which enabled E. coli to grow by fixing CO2 from the ambient
air into biomass.393 Compared to CBB, other native pathways
have not been extensively explored to generate autotrophy in
heterotrophs. Kondo and co-workers constructed a CO2 and
formate fixation pathway that converts two formate molecules
and one CO2 molecule to one pyruvate via glycine and L-serine
in E. coli.394

3.3.3. Plastics as Substrate. Another alarming environ-
mental concern is the growing accumulation of plastic wastes
that are difficult to degrade. Many studies have developed
innovative approaches for the disposal of plastic wastes in a
more sustainable manner. Plastics are mainly polymers, like
polyethylene (PE), polystyrene (PS), polypropylene (PP),
polyvinyl chloride (PVC), polyurethane (PUR), and poly-
ethylene terephthalate (PET). Natural degradation of these
plastics takes thousands of years, which is not sustainable
considering the rate of plastics production. However, natural
microorganisms carrying microbial metabolic pathways for
plastic depolymerization offer an alternative solution. Several
species of Pseudomonas have been of particular interest due to
their capabilities to degrade and metabolize synthetic plastics;
however, the rate of plastic degradation and its use for making
other materials are still limited.395 Huang and co-workers
degraded plastics using chemical technology called alkane
metathesis, where long alkanes present in PE are covalently
rearranged to give a new molecular distribution creating new
products used in liquid fuels and waxes.396 Recently, Wei and
co-workers utilized an enzymatic degradation process where
TfCut2 (i.e., thermophilic polyester hydrolases) from
Thermobif ida fusca expressed in B. subtilis was used for the
treatment of PET-based food packaging containers and
showed weight reduction of more than 50% after 96 h of
incubation at 70 °C.397 In 2020, characterization of Ideonella
sakaiensis revealed the presence of a two-enzyme system
PETase and MHETase, which was capable of deconstructing
PET to terephthalate and ethylene glycol.398 Chen and co-
workers worked on hydrolysis of PET films using a
thermostable polyester hydrolase, which yielded terephthalate
and ethylene glycol. Later the obtained hydrolysate was used
directly as a feedstock by the bacterium Pseudomonas
umsongensis GO16 capable of degrading terephthalate.399

Also, P. umsongensis was further evolved to efficiently

metabolize ethylene glycol to produce polyhydroxyalkanoate
(PHA). With metabolic engineering, synthetic plastics can be
directly employed as a feedstock to alleviate the global
challenge of plastic accumulation.
3.4. Robustness

The concept of engineering organism robustness originated in
developing robust crops that are resistant to harsh conditions
like drought,400 and in the last few decades, more attention has
been given to engineering robustness in microbial cell
factories.401 The use of lignocellulosic hydrolysates as a
substrate has motivated much of this research as it contains
a multitude of inhibitors including furans, phenols, and
aliphatic acids.373 Robustness covers a broad range of common
phenotypes that can be characterized as maintenance of fitness
under the pressure of a particular type of stress. Common
stressors include temperature, pH, osmotic pressure, substrate,
and product chemicals. Engineering robustness is an
industrially relevant phenotype, as large-scale bioreactors
create a harsh environment for cell proliferation. The most
common strategy for engineering robustness is ALE due to its
compatibility with growth related phenotypes and its ability to
achieve tolerant mutants within a single experiment while also
often evolving other beneficial phenotypes in the process.94

Common rational approaches include engineering regulation
factors, transporters, membranes, protection pathways, com-
petition pathways, and balancing pathways.402 Similar to
growth phenotypes, tolerance is a polygenic trait and often
draws on many different cellular subsystems making it a
difficult rational engineering target.403 Furthermore, tolerance
to individual stressors does not often behave additively, ruling
out most rational design strategies in the multi-inhibitor
setting.404 Robustness is typically studied in laboratory
conditions at milliliter to liter scales in conditions that do
not necessarily replicate in an industrial setting, making it
difficult to bridge the gap between academic methods and
industrial applications.405 As there are numerous engineering
strategies and different inhibitor environments, we primarily
focus on temperature and alcohol stress and the diverse set of
tools that have been used to overcome tolerance. Table 5
provides additional examples of tolerance engineering.

3.4.1. Temperature Tolerance. Nielsen and co-workers
conducted a notable study related to robustness using a
breadth of tools to engineer thermotolerant yeast strains
(TTSs) through ALE.92 Temperature tolerance is of general
interest due to reduced contamination risk and higher
operating temperature of industrial fermenters. Nielsen and
co-workers grew three individual clonal populations of haploid
S. cerevisiae at 39.5 ± 0.3 °C for more than 90 days, equating to
more than 300 generations. Nine strains were selected from
these three clonal populations, 3 from each, and 7 TTS
behaved similarly at 40 ± 0.1 °C in fully aerobic conditions
growing an average of 1.91 ± 0.12 times faster, consuming
glucose on average 1.50 ± 0.2 times faster and excreting
ethanol and glycerol on average 1.6 ± 0.09 and 1.3 ± 0.08
times faster respectively compared to the parent strain.
Genome sequencing and whole-genome transcriptome profil-

Table 5. continued

specific conditions host improvements/discoveries metabolic engineering strategies ref

Short-Chain Alcohol
• 0.1% n-hexanol
• 0.04% n-heptanol
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ing were performed on the strains. Genome sequencing
identified chromosomal duplication in the evolved strain and
single nucleotide variants (SNVs) and indels responsible for
improved thermotolerance. Specifically, duplication of genes
on a region ChrIII previously reported for thermotolerance
was reidentified. To verify the causal effect of SNVs on
thermotolerance, point mutation reconstruction with fusion
PCR was performed on genes ATP3 and ERG3, and it was
found that ATP3 mutations negatively affect thermotolerance,
but ERG3 mutations conferred up to 86% of the specific
growth rate of the evolved TTSs. The mutations in ERG3 have
been reported to augment the activity of sterol methyltransfer-
ase Erg6, causing higher production of fecosterol, or “bent”
sterol as opposed to “flat sterols,” like ergosterol, which have
been previously reported to have no effect on thermotolerance,
leaving researchers to hypothesize that “bent” sterols could be
responsible for improving thermotolerance. Whole-genome
transcriptome profiling was performed on yeast during
exponential growth in bioreactors and the moderated t-statistic
was applied to identify pairwise differences between gene
expression in each TTS and the parental strain. External fluxes
from HPLC, including glucose and ethanol and specific
growth, were used to constrain GEM iIN800 and calculate
metabolic fluxes. Transcriptome profiles and calculated
metabolic fluxes were used with the FBA RAVEN random
sampling algorithm to identify probable changes in metabolic

flux. From the MFA results, TTSs were identified to have
residual TCA activity which in combination with TTSs having
∼30% increased oxygen uptake explains the oxidation of
cytosolic NADH generated by increased biomass yield.
Additionally, gene transcription and metabolic flux were
found to be upregulated in the mevalonate pathway and in
sterol biosynthesis in select TTSs when compared to parental
strains. This along with the knowledge that sterols are
responsible for membrane fluidity allowed the researchers to
hypothesize that “bent” sterols could be optimal for membrane
fluidity at higher temperatures (Figure 18).92

3.4.2. Alcohol Tolerance. Model yeast S. cerevisiae is the
most common microbial ethanol producer, but ethanol in high
concentrations is toxic to yeast cells because it permeates cell
membranes and allows ion leakage disturbing carefully
controlled ion gradients. Stephanopoulos and co-workers
hypothesized that supplementing the growth media could
help stabilize the plasma membrane, so they added different
salts into high gravity, or high sugar, media which mimics the
osmotic stress found in industrial bioreactors. The addition of
40 mM KCl and 10 mM KOH to media with wild-type S.
cerevisiae brought the strain up to industrial production levels
by increasing intracellular K+ ions and increasing pH. The
addition of ions alone improved titers by 30 ± 1.2%. Media
supplementation similarly improved cell viability in the
presence of common antiseptic 2-propanol and alternative

Figure 18. Robustness case study on thermotolerance. After evolutionary design with ALE, subsequent analysis including omics, MFA, and
genomic analysis helped deduce that increased tolerance at 40 °C was associated with increased concentration of fecosterol as opposed to
ergosterol.
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biofuel isobutanol, suggesting that ion composition affects
higher-order cellular processes that provide tolerance to small
alcohols and other membrane permeating molecules in general.
The media supplementation also improved ethanol fermenta-
tion on xylose for a modified xylose assimilation strain,
improving titer by 54 ± 5.7%, showing that improvements
have little to do with genetic background. Next, the ATP
pumps including K+ importer TRK1 and H+ exporter PMA1
were rationally engineered by deleting PPZ1 and PPZ2 to
activate TRK1 and upregulate PMA1 to help maintain the ion
gradient across the plasma membrane. These changes resulted
in 27 ± 2.2% and ∼6% titer improvement from the wild-type
strain and the Brazilian ethanol production strain PE-2,
respectively. Modification of the ion pumps alone improved
cell tolerance, but the largest improvements came from KCl
and KOH supplementation, which suggests that certain types
of tolerance are primarily driven by physical instead of genetic
determinants.406 While altering the environment is a feasible
solution to engineering robustness, metabolic engineering
efforts typically focus on genetic interventions.

It is known that adaptation to different environments
through a few cellular generations is governed by the
regulatory network and not protein mutations,407 and because
of this genes can be identified in different stress environments
associated with key transcription factors. The gene regulatory
network is constructed as a hierarchy with global transcription
factors sitting on top of the hierarchy, making it easy to affect
system-wide changes with few gene modifications.408 Using
this idea, at a time when it was still difficult to introduce
multiple simultaneous gene modifications, Stephanopoulos and
co-workers developed the tool of global transcription
machinery engineering (gTME), which used random muta-
genesis to mutate key residues in the main sigma factor, σ70

which in turn altered RNA polymerase promoter preferences.
This tool was used to engineer ethanol tolerance, lycopene
production, and a multiphenotype tolerance to ethanol and
sodium dodecyl sulfate.409 In another effort to engineer alcohol
tolerance, Papoutsakis and co-workers engineered E. coli for
improved tolerance against i-, n-, and 2-butanol, 1,2,4-
butanetriol, and ethanol and other alcohols. Heat shock
proteins have been previously associated with robustness in
Gram+ bacteria due to their ability to maintain normal protein
folding and protein transport, but their ability to confer solvent
tolerance in Gram− bacteria like E. coli was still unknown.
Overexpression of the two-part chaperonin system GroESL
was overexpressed and consistently increased cell viability for
all studied chemicals.410

4. FUTURE PERSPECTIVES
Development of microbial cell factories to produce value-
added chemicals has been aided by the rapid progress and
remarkable accomplishments in the field of metabolic
engineering. Nevertheless, due to the lack of fundamental
knowledge, multiple rounds of the DBTL cycle are necessary
to achieve efficient cell factories, and several obstacles remain.
Here we discuss the future directions in metabolic engineering,
including engineering of nonmodel organisms, development of
biofoundries and AI/ML tools, utilization of nonsugar
substrates, engineering of microbial consortia, and scale-up of
fermentation processes. We focus on the existing barriers and
the possible solutions and future developments that could
potentially address such challenges.

4.1. Non-model Organisms

E. coli and S. cerevisiae are considered as the traditional
workhorses of metabolic engineering because of their well-
understood physiologies and because there are abundant
genetic engineering tools. Nevertheless, S. cerevisiae and E. coli
lack some desired characteristics, such as tolerance to harsh
conditions, including low pH or high oxidative stress, the
ability to utilize simple or complex carbon sources, or the
capability to accumulate target products or precursors of target
molecules. Thus, non-model microorganisms possessing these
unique traits are being increasingly explored for production of
chemicals. For example, Issatchenkia orientalis is renowned for
its superior tolerance to highly acidic conditions, which makes
it a potential host for the economic production of organic
acids, and R. toruloides is an oleaginous yeast capable of
accumulating lipids up to 70% of its dry cellular weight and is
thus a preferred host for the production of lipid-based
chemicals, such as oleochemicals and diesel- l ike
fuels.142,419,420 Moreover, cyanobacteria can perform oxygenic
photosynthesis and carbon fixation, enabling production of
chemicals from carbon dioxide, water, and light. Filamentous
fungi like Aspergillus niger and Fusarium fujikuroi can naturally
secrete organic acids and plant growth hormones, respectively,
making them attractive hosts for overproduction of these
compounds.421−423

Although non-model organisms are increasingly explored in
metabolic engineering, genetic engineering in non-conven-
tional microorganisms is still hindered by several challenges. In
E. coli and S. cerevisiae, gene expressions using episomal
plasmids are widely used due to the availability of stable and
varying copy number vectors. Nevertheless, in non-model
organisms, gene expression is often accomplished through
chromosomal integration because of the lack of stable episomal
plasmids. While episomal plasmids harboring autonomously
replicating sequences are available for some non-model
organisms, they tend to be unstable and have low copy
numbers. Moreover, plasmids lacking centromeric sequences
exhibit variable expression across cells in a single population
due to imperfect partitioning of plasmids upon cell division.
Some non-model organisms also suffer from low trans-
formation efficiencies making genome-scale engineering
methods, which require high transformation efficiency,
challenging in these species. Furthermore, metabolic engineer-
ing in non-conventional microorganisms is limited by the
incomplete understanding of their metabolism, genetics, and
physiology. Thus, to harness the full potential of non-model
microorganisms, new systems biology and synthetic biology
tools need to be developed to increase the genetic toolbox for
rapid and efficient strain engineering and to expand our
understanding of their unique biochemistry and native
physiology.
4.2. Biofoundry Development

Metabolic engineering of biological systems such as proteins,
pathways, genetic circuits, and genomes involves the repetitive
execution of the DBTL cycle to achieve the desirable
engineering objective. However, manual operations are prone
to human errors when numerous iterations are required, which
reduces the experimental consistency and objectiveness.
Moreover, the number of tasks that can be explored in parallel
in each cycle is limited due to low throughput and turnover
rate.365,366 Biofoundries provide an integrated infrastructure
for rapid design, construction, and characterization of synthetic
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biosystems through computer-aided design (CAD) software,
design-of-experiments (DOE), liquid handlers, and high-
throughput screening equipment.424−426 One aspirational
goal of biofoundries is to accelerate and enhance both
academic and translational research in engineering/synthetic
biology by promoting and enabling the beneficial use of lab
automation. Over the past 5 years, multiple biofoundries have
been built to expand the biotechnology development
capacities. The Edinburgh Genome Foundry can process
over 2,000 DNA assembly reactions per week.427 The Illinois
Biological Foundry for Advanced Biomanufacturing (iBioFAB)
can automatically generate 400 pairs of TALENs on a daily
basis.428 Furthermore, iBioFAB has been able to perform
multiplexed genome-scale engineering of S. cerevisiae429 and
construct any plasmidin a high-throughput manner.430 Other
biofoundries such as the London DNA Foundry,431 Singapore
SynCTI Foundry,432 and US DOE Agile BioFoundry433 have
been developing similar automated workflows to benefit
scientists across various research fields as well. In order to
share experiences and resources and work together to
overcome common challenges and unmet scientific and
engineering needs, the Global Biofoundry Alliance (GBA)
was launched in May 2019.426

Within this context, we believe that one of the next waves of
innovation in metabolic engineering would be a fully
automated DBTL cycle with reduced turnaround time. A
flexible, versatile, and data-driven biofoundry framework for
metabolic engineering would become possible with improved
laboratory automation, data and protocols standardization, and
better integration of the wet-lab and cloud-based opera-
tions.424−426,434 To develop such a biofoundry, there are three
fundamental requirements: (1) combining rational models and
ML tools for Design and Learn, (2) investigating solutions to
efficiently use cloud repositories and exchange workflows
among biofoundries for Build, and (3) exploiting the potential
of real-time high-resolution omics data analysis for Test.
Currently, lab robotics and integrated software are mostly
suited for automating standard workflows where constructed
mutants can be separated and characterized via fluorescence-
based protein tags or an NGS-based approach.435−437

However, analysis of the small molecules and bioproducts
produced by engineered microorganisms often includes
quantification and comparison of TRY. Because most of
these molecules are difficult to quantify and whole-genome
sequencing of strains is expensive and time-consuming, there
remains a significant gap for automatically screening
synthesized compounds in a high-throughput manner.
Droplet-based microfluidics has emerged as an attractive
platform as the integration of automated sample preparation
and mass spectrometry analysis becomes possible.438−442

Online real-time detection and analysis of produced molecules
with limited human interventions would be ideal in the future.
With the recent achievements in ML and artificial intelligence
(AI)-based prediction of protein structures and functionsof
interest, standardized computational tools and exchange of
information among pipelines could be reached.443 We envision
iterative rounds of the DBTL cycle being fully automated, with
the robot making predictions and decisions about the gene
targets to choose in future experimental rounds until the
desired microorganisms are constructed.266,444 A data-driven
closed-loop metabolic engineering biofoundry would solve the
challenges of labor-intensive strain library construction as well
as library screening and characterization.

4.3. AI/ML Tools
ML in metabolic engineering has demonstrated its effective-
ness in improving production in a reduced number of DBTL
iterations and in analyzing data to predict new biological
interactions or characterize component parts. For example,
Bioautomata266 improved lycopene production by 77%
compared to random screening in just 3 rounds, and the
automated recommendation tool (ART)272 demonstrated
improved design predictions for fatty acids and tryptophan.271

A recent example has used sequence information and cell
sorting to characterize all of the promoters in S. cerevisiae,
creating a model that in principle could allow for promoter
design in an engineered pathway.273 Major limitations of ML
specific to metabolic engineering include integration of
different data modalities and interpretability.

Integrating data modalities is a primary concern because it is
now feasible to collect data at every level of cell processing.
Traditionally, specific omics layers have been studied in
isolation, or with small amounts of additional data. Because all
omics layers are interconnected, it is difficult to know a priori
which elements across the different modalities are important to
measure. Modeling multiple data modalities will allow for the
identification of important covariates across layers to help
identify gene targets for engineering that would be otherwise
undetected from a single modality. The inclusion of output
from mechanistic models as an additional data modality has
also received some attention with some success.446,447 Lastly,
there is an abundance of unused data in the literature that has
not been codified into databases due to the difficulty in
extracting, verifying, and unifying experimental information.
While ML has shown use in predicting synthesis parameters in
material sciences,445 mining of literature for data curation
useful for metabolic engineering remains an open question,
with current methods only able to capture general metabolic
trends.282 It remains to be seen whether it is possible to use
ML for the extraction and curation of high-quality biological
data.

A fully predictive mechanistic model of cellular metabolism
is ideal for design, as it allows for reasoning about predictions.
Constructing interpretable ML models, sometimes called white
box or glass box models, would allow for refinement of
biological knowledge and subsequent elaboration of more
accurate mechanistic models. Without interpretability of salient
features, we risk collecting an abundant amount of costly data
that provides little to no improvement in biological under-
standing. The lack of interpretability in ML models is in
opposition to the traditional mechanistic modeling paradigm.
In the last five years, there has been a strong effort in taking
advantage of the knowledge-based representation of the cell
from reaction networks to ontologies to build ML models with
more interpretable architectures. One example uses the
hierarchical representation of the gene ontology graph as the
model architecture to build a visible neural network. While this
model’s ability is not directly useful for the prediction of target
product TRY, it demonstrates that cell growth phenotypes can
be predicted from gene knockouts, and it provides explanations
by allowing the affected cellular compartments to be inspected
for meaningful changes.279 Metabolic representation of the cell
in GEMs and in ML models do not currently share a unified
representation. There have been attempts to combine them,446

but typically the output of a GEM is used as input to a ML
model or vice versa.447 In an attempt to further merge this gap,
Faulon and co-workers developed an artificial metabolic
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network (AMN) that allows for the backpropagation of errors
within the metabolic network, blending important elements of
mechanistic and ML-based models. The AMN model was first
trained on simulated FBA data sets and then used to improve
predictions of MFA on growth rate data sets in E. coli. This
construction allowed for the uncovering of regulation between
growth media and the steady-state metabolic phenotype.448

GEMs and kinetic models have become more popular as
engineering tools, but their predictive performance is still
insufficient. We expect to see an increased effort in building
new hybrid models that combine mechanistic models and ML
models to achieve both high predictive performance and
interpretability.
4.4. Nonsugar Substrates

For most metabolic engineering studies, glucose has been used
as the substrate for microbial production of molecules at
laboratory and industrial scales. Nevertheless, it is not
considered a sustainable source for large-scale fermentations.
To address this limitation, attention has shifted to the
utilization of other sustainable carbon sources such as
lignocellulosic biomass and glycerol derived from petrochem-
ical industries. However, mixed sugars and inhibitors present in
the lignocellulosic hydrolysate often expose cells to carbon
catabolite repression issues, which can lower cell density and
reduce product yields. Fortunately, “Y-shaped” microbial
consortium reactors with a shared biosynthetic pathway and
distinctive sugar catabolic pathways, for example glucose and
xylose, can be used in simultaneous cofermentation to
overcome microbial substrate preferences.449 This strategy
could be implemented for the coutilization of other substrates.

Other nonsugar, inexpensive substrates are organic industrial
waste and greenhouse gases, which have been shown to be a
great alternative to feed microorganisms. LanzaTech has been
intensively engineering acetogenic bacteria to produce more
than 50 chemicals from gaseous species at the lab level and a
few molecules, such as ethanol, acetone, and 2-propanol, at the
pilot scale. One of the challenges with acetogens is cellular
energy limitation, which affects carbon assimilation. Although
acetogens have a native ability to utilize the C1 substrate and
low value-added chemicals, an extensive exploration of this
bacteria is still hampered by the scarcity of advanced genetic
tools. Researchers are still focusing on engineering autotrophic
model organisms, and they recently made the first autotrophic
E. coli, which was still not comparable to natural C1 utilizing
hosts. Metabolizing CO2 also requires an additional energy
source that can be provided by light, H2, CO, and organic or
inorganic compounds. We expect further advancement of
genetic tools related to non-model organisms will have the
soonest impact on C1 utilization.

Apart from the mentioned carbon substrates, marine
macroalgae including red, green, and brown macroalgae have
huge potential to serve as feedstocks for the production of a
broad range of chemicals.450 Macroalgae production does not
compete with the production of land-based food crops, as it
does not require arable land, freshwater, or fertilizer. These
macroalgae contain a unique composition of carbohydrates
and are shown to produce a variety of chemicals including
ethanol, β-carotene, lactate, acetoin, and BDO. However, these
macroalgae can be further rewired to achieve a particular
carbohydrate composition. The ability to utilize different
carbon sources by the native or engineered host can reduce the

dependency on one substrate and make them available
sustainably.
4.5. Microbial Consortia

A barrier when using genetically engineered microorganisms
that carry heterologous genes is the increase in metabolic
burden from the activity of the corresponding enzymes.451

This can decrease the overall productivity of the micro-
organisms toward target molecule production. To counter the
low metabolic efficiencies in such scenarios, division of labor of
complex metabolic pathways among multiple microorganisms
has been considered as a viable alternative. The past decade
has seen an increased focus on the application of communities
of multiple microorganisms, also known as microbial consortia,
to produce target molecules. The artificial or synthetic
microbial consortia were inspired by naturally occurring
microbial consortia, such as the gut microbiome.452 Besides
the division of labor leading to a distributed metabolic burden,
microbial consortia offer additional advantages in biochemical
production. The compartmentalized nature of metabolic
pathways for production results in a modular organization.
The presence of symbiotic or coexisting microorganisms also
reduces the chances of contamination compared to a
monoculture.

So far, applications of microbial consortia in biochemical
production have seen very little work on engineering the
individual microorganisms of the consortium. Due to the lack
of effective predictive tools at the community level, the design
space of microbial communities for biochemical production
consists of numerous unknowns. The most common design
decisions involve tuning the ratios of different cell populations,
geometry of the bioreactors, and growth conditions suitable for
all the chosen microorganisms. Recent work on the use of
methods such as FBA in a microbial community setting has the
potential to inform the engineering of individual micro-
organisms in a community or consortium context.453

Variations of such algorithms have even enabled the time-
based prediction of community interactions and may play a
role in the future in designing dynamic control of target
molecule production in a microbial consortium.454 One
particular method, SteadyCom, is capable of predicting
steady-state compositions of microbial communities.455 This
may prove particularly useful in systematically tailoring the
initial ratios of the different microorganisms used in a synthetic
consortium to achieve a desired microbial composition, which
previously relied on intensive trial-and-error experiments.

The modeling of microbiome community dynamics has
received greater attention in the context of the human gut
microbiome.456 Efforts in building community models can aid
in identifying metabolite exchanges among gut microorgan-
isms. The use of GEMs along with constraint-based analysis
has been used to inform hypotheses on metabolic interactions
within gut microbiomes. Such modeling efforts have also been
used to infer rules about the organization of the gut
microbiome at a community level.457 In the future, this
accrued knowledge generated in the field of human gut
microbiome modeling can be translated to applications in
metabolic engineering of microbial consortia as well.
Community models can be applied to engineer microbial
species that work in tandem within a consortium for efficient
conversion of substrates to a target molecule.
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4.6. Scale-up Fermentations

The goal of metabolic engineering is to develop efficient
processes for production of chemicals and fuels from
renewable biomass at large scales. Semisynthetic artemisinin
was the first pharmaceutical agent that was produced
biologically at an industrial scale.322 Genomatica has
established a commercial route for the conversion of glucose
into 1,4-BDO. The process was successfully conducted in over
50 runs to produce over 4,000 tons of 1,4-BDO at a
commercial scale.295 Recently, LanzaTech developed an
industrial carbon-negative fermentation process, which was
discussed in the 2-propanol and acetone case study.297

Despite the outstanding accomplishments in metabolic
engineering over the past 30 years, there have been very few
successful transitions from lab-scale fermentations into
commercial scale processes and marketed products. The
main technical bottleneck with scale-up is lack of access to
facilities for pilot and large-scale productions. Even if entry to a
manufacturing site is possible, performing experiments at scale
to optimize the fermentation conditions is often infeasible due
to cost. Furthermore, because the environment of a large-scale
bioreactor is vastly different from that of small-scale cultures
such as shake flasks, it is expected that most strains do not
perform similarly at these conditions. Several scale-dependent
physical, chemical, and biological parameters can hinder
microbial growth and product formation in commercial
bioreactors.458 To facilitate scale-up processing, it is necessary
to perform lab-scale experiments under conditions imitating
the intended large-scale production conditions.459 Computa-
tional tools to simulate large-scale conditions in smaller-scale
reactors can also be utilized.

5. CONCLUSIONS
Metabolic engineering has come a long way from its early days
of manipulating a few genes for production of simple molecules
to being successfully employed for efficient production of
chemicals and fuels from a diverse range of carbon sources.
Furthermore, motivated by concerns over energy and
sustainability, metabolic engineering is currently regarded as
a sustainable alternative to conventional petroleum-based
production processes. Advances in computational tools,
synthetic biology tools, and analytical tools have further
facilitated metabolic engineering endeavors, including the
development of efficient microbial cell factories and the
expansion of the range of substrates that can be utilized and
the products that can be produced. Despite all of these
achievements, lack of fundamental knowledge on cellular
metabolism and physiology remains a major roadblock to the
advancement of the field. Therefore, it is necessary to improve
the understanding of biological systems to realize the full
potential of metabolic engineering.
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Chen, H.; Hurtado, J. E.; Zhang, Q.; García-García, J. D.; Heins, Z. J.;
et al. In Vivo Hypermutation and Continuous Evolution. Nat. Rev.
Methods Primer 2022, 2, 1−22.
(100) Wang, H. H.; Kim, H.; Cong, L.; Jeong, J.; Bang, D.; Church,

G. M. Genome-Scale Promoter Engineering by Coselection MAGE.
Nat. Methods 2012, 9, 591−593.
(101) Wang, H. H.; Isaacs, F. J.; Carr, P. A.; Sun, Z. Z.; Xu, G.;

Forest, C. R.; Church, G. M. Programming Cells by Multiplex
Genome Engineering and Accelerated Evolution. Nature 2009, 460,
894−898.
(102) Du, J.; Yuan, Y.; Si, T.; Lian, J.; Zhao, H. Customized

Optimization of Metabolic Pathways by Combinatorial Transcrip-
tional Engineering. Nucleic Acids Res. 2012, 40, No. e142.
(103) Lian, J.; Schultz, C.; Cao, M.; HamediRad, M.; Zhao, H.

Multi-Functional Genome-Wide CRISPR System for High Through-
put Genotype−Phenotype Mapping. Nat. Commun. 2019, 10, 5794.
(104) Lee, S. Y.; Nielsen, J.; Stephanopoulos, G. Metabolic
Engineering: Concepts and Applications; John Wiley & Sons, 2021.
(105) Coley, C. W.; Rogers, L.; Green, W. H.; Jensen, K. F.

SCScore: Synthetic Complexity Learned from a Reaction Corpus. J.
Chem. Inf. Model. 2018, 58, 252−261.
(106) Kumar, A.; Wang, L.; Ng, C. Y.; Maranas, C. D. Pathway

Design Using de Novo Steps through Uncharted Biochemical Spaces.
Nat. Commun. 2018, 9, 184.
(107) Koch, M.; Duigou, T.; Faulon, J.-L. Reinforcement Learning

for Bioretrosynthesis. ACS Synth. Biol. 2020, 9, 157−168.
(108) Finnigan, W.; Hepworth, L. J.; Flitsch, S. L.; Turner, N. J.

RetroBioCat as a Computer-Aided Synthesis Planning Tool for
Biocatalytic Reactions and Cascades. Nat. Catal. 2021, 4, 98−104.
(109) Ding, S.; Tian, Y.; Cai, P.; Zhang, D.; Cheng, X.; Sun, D.;

Yuan, L.; Chen, J.; Tu, W.; Wei, D.-Q.; et al. NovoPathFinder: A
Webserver of Designing Novel-Pathway with Integrating GEM-
Model. Nucleic Acids Res. 2020, 48, W477−W487.
(110) Probst, D.; Manica, M.; Nana Teukam, Y. G.; Castrogiovanni,

A.; Paratore, F.; Laino, T. Biocatalysed Synthesis Planning Using
Data-Driven Learning. Nat. Commun. 2022, 13, 964.
(111) Kim, G. B.; Kim, W. J.; Kim, H. U.; Lee, S. Y. Machine

Learning Applications in Systems Metabolic Engineering. Curr. Opin.
Biotechnol. 2020, 64, 1−9.
(112) Kim, D. I.; Chae, T. U.; Kim, H. U.; Jang, W. D.; Lee, S. Y.

Microbial Production of Multiple Short-Chain Primary Amines via
Retrobiosynthesis. Nat. Commun. 2021, 12, 173.
(113) Gu, P.; Yang, F.; Su, T.; Wang, Q.; Liang, Q.; Qi, Q. A Rapid

and Reliable Strategy for Chromosomal Integration of Gene(s) with
Multiple Copies. Sci. Rep. 2015, 5, 9684.

(114) Datsenko, K. A.; Wanner, B. L. One-Step Inactivation of
Chromosomal Genes in Escherichia coli K-12 Using PCR Products.
Proc. Natl. Acad. Sci. U. S. A. 2000, 97, 6640−6645.
(115) Gueldener, U.; Heinisch, J.; Koehler, G. J.; Voss, D.;

Hegemann, J. H. A Second Set of LoxP Marker Cassettes for Cre-
Mediated Multiple Gene Knockouts in Budding Yeast. Nucleic Acids
Res. 2002, 30, No. e23.
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